
A Case Study in Open Source Patch
Submission

Studienarbeit in Computer Science

by

Holger Macht

born on 1982-08-18 in Hof a.d. Saale

at

Department of Computer Science
Professorship for Open Source Software

Friedrich-Alexander University Erlangen-Nuremberg

Advisor: Prof. Dr. Dirk Riehle

Start: 2011-11-01
End: 2012-05-25

I affirm that this thesis is my own work and has never been used before, for any
auditing purposes. All used sources, additional used information and citations are quoted
as such.

Nuremberg, 25th May, 2012

Holger Macht

This work is licensed under the Creative Commons Attribution License. To view a
copy of this license, visit http://creativecommons.org/licenses/by/2.0/ or send a letter
to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

Abstract

Although open source and the related processes have become an inherent part of the
computer industry, companies and other contributors are often reluctant when it comes
to active involvement and participation. The reasons are manifold. Strong ones are
that most open source projects are self-governing, without a fixed road map or schedule,
each which its own development process. This seems to make them unreliable and
unpredictable, because personal intentions cannot be enforced and rely on the open
source community in charge of leading the projects.

Within an exemplary case study, a new feature spawning multiple layers of a GNU/Linux
based operating system, and thus different open source projects, will be implemented
and submitted for inclusion. All this bounded by a predefined, fixed time frame, which
might be exemplary for schedule and budget driven company structures. The underlying
development processes of the Linux kernel, a middle ware project called UDisks and the
GNOME desktop will be considered and acted upon accordingly.

As a whole, the feature submission failed, because it was not possible to include all
the required changes in all target projects in time. The failure has two main reasons:
First, it is caused by technical problems which could occur in every software project, and
thus not related to open source processes in particular. Second, and more relevant for
this research, delays occurred due to common obstacles one has to face in the individual
open source development processes. Individuals cannot put as much pressure as they
like on the projects and are kind of at their mercy.

As an overall outcome, trying to include a new feature in different open source projects
depending on each other is possible, however, unpredictable to a certain extent. The
open source community has its own rules and processes, companies or other contributors
cannot rely on being able to influence in whatever way they want. The advancements
heavily depend on the relevant community and project members and thus the process
involved. Conclusion: When submitting patches, always expect another iteration.

i

ii

Contents

1 Introduction 1

2 Literature Review 3

3 Research Design 5

4 Solving a Real-World Problem 7

4.1 Architecture of Modern GNU/Linux Based Operating Systems.8

4.2 Required Implementations . 9

4.3 Reevaluation of the Case Study Preconditions . 10

5 Formalities of the Patch Submission Process 11

5.1 The Linux Kernel . 14

5.2 UDisks . 16

5.3 The GNOME Desktop Environment . 17

6 Definition of a Submisson Strategy 19

6.1 Stage 1 - Development and Submission of Linux Kernel Parts19

6.2 Stage 2 - Development and Submission of Userland Parts 20

7 Initial Feature Design and Implementation 21

7.1 Kernel Space . 21

7.1.1 Patch Set Creation: Iteration One . 22

7.2 Userland: UDisks and GNOME . 24

8 Feature Submission Process 25

8.1 Initial Submission . 25

8.2 Missing the First Kernel Release Cycle . 26

8.3 Strategy Adaption . 26

8.4 Reacting on Feedback from the Community . 26

8.4.1 Resubmission 1 . 27

8.5 Reacting on Feedback Cont. 28

iii

Contents

8.5.1 Fixing a Boot Problem . 28

8.5.2 Fixing a Compilation Error . 28

8.6 Drawing a Final Stroke . 29

9 Recapitulation 31

9.1 Schedule Deviance . 31

9.2 Impact of Missing the Deadlines . 31

9.3 Localizing the Problems . 32

9.3.1 Caused by Personal Matters . 32

9.3.2 Caused by the Nature of Open Source . 32

9.3.3 Caused by the Individual Project . 32

9.4 Identified Best Practices .33

10 Conclusion 35

A Appendix 37

A.1 Patch Mails for the Linux Kernel . 37

A.1.1First Iteration of Patches (2011-12-06) . 37

A.1.2Second Iteration of Patches (2012-01-20) . 53

A.1.3Additional Patches (2012-02-18) . 54

A.2 Patches for Userland . 57

Bibliography 61

iv

1. Introduction

Open source, open standards and the processes around them have become a more and
more interesting alternative to proprietary software development during the last couple
of years. Even in big well-known companies like Microsoft1, which once were famous
for their closed source approaches, the borders between closed and open source become
blurred. The founding of a subsidiary with the goal to strengthen and incorporate
more open source business 2 is only one example from the recent past. Also hardware
manufacturers like Intel3, NVIDIA4 or Broadcom 5 become more and more engaged when
it comes to creating and releasing open source drivers for their hardware components,
especially for GNU/Linux based operating systems.

However, other companies are often more reluctant in this area. Open source software
development often seems to endanger their well-known, proved and existing development
processes, their intellectual property and last but not least, their immediate control over
their own source code. This does not necessarily exclusively apply to business companies,
but might also concert individual developers which aim to become contributors in the
open source development community. How to deal with project members in the open
source world? When, how, in which form and where to submit code? Those are common
questions each single developer or company might ask.

Those answers might be relatively simple to be answered if the targeted project is
rather small, same for the actual contribution. However, if bigger changes and projects
are involved, maybe even different projects depending on each other, the actual situation
becomes rather complicated and unclear. It can be considered a great challenge for
companies or an independent open source contributor to quickly adapt themselves to
those different models. Concrete and step by step guidance is often missing or sparse.

So this research project tries to fill this gap, to a certain extend and as far es possible.
It tries to answer the question if it is possible, or at least predictable, to implement a new
feature spawning multiple open source projects within a predefined time frame. This
is intended to be accomplished with the help of a concrete, real-world example which
is targeted for the open source communities around GNU/Linux operating systems.
It can be considered as an additional source of information when it comes to deciding,

1http://www.microsoft.com
2http://www.h-online.com/open/news/item/Microsoft-creates-open-source-offshoot-1520424.

html
3http://www.intel.com
4http://www.nvidia.com
5http://www.broadcom.com

1

http://www.microsoft.com
http://www.h-online.com/open/news/item/Microsoft-creates-open-source-offshoot-1520424.html
http://www.h-online.com/open/news/item/Microsoft-creates-open-source-offshoot-1520424.html
http://www.intel.com
http://www.nvidia.com
http://www.broadcom.com

1. Introduction

whether to put efforts into open source or not. The research work does explicitly exclude
other possible benefits or disadvantages of open source software development. Those
discussions are not subject of this thesis. It is rather a mixture of software design and
open source development methods, with a strong focus on the actual patch submission
process.

After choosing an appropriate research method (cf. 3), the thesis looks at three
different open source projects depending on each other. Their development process (cf.
5), including their source code availability, incorporated tools or contributor interaction
plays an important role when it comes to understanding and planning the upcoming
feature. In this regard, special focus lies on the project around the Linux kernel6, because
it can be seen as the foundation stone for the operating system in a broader sense.
Furthermore, it is an ideal example of a very large, successful project with thousands of
contributors and community members.

After gaining the needed project knowledge, a proper schedule will be aligned (cf.
6). This schedule will be the guide line for the subsequent implementation of a feature
improving the dock station support within GNU/Linux based operating systems (cf.
7). Once ready, it will be submitted to the relevant projects (cf. 8) piece by piece in
form of so called patch sets. Feedback requiring the resubmission of the relevant source
code is expected, due to the size of the changes. The research project ends with a fixed
date, or the moment the feature is officially shipped with the release of all concerning
projects. The latter is not expected to come true, though. So the implementation and
proper functionality of the performed feature is not entirely subject to this work. It is
not enough to have this implemented and working, but to get the changes accepted in
the relevant open source projects so that Linux distributions can pick them up.

On the way, all this will provide a rough guide line on how to create and submit those
patches to other, but similar, open source projects. Finally, it will assess the success
or failure of the outlined strategy to identify some best practices and likely successful
strategies for submitting patches to large well-known open source projects.

6http://www.kernel.org

2

http://www.kernel.org

2. Literature Review

A lot has been written about Free/Libre/Open Source Software (FLOSS) and the sur-
rounding processes the last couple of years. More and more companies get involved in
open source software (OSS) development. Of course, academics are picking this topic
up to conduct scientific research and release papers, books and articles. While the topic
handled here focuses on the actual submission process to large well-known open source
projects, most of the available material addresses the underlying principles and method-
ology. For instance, Gwendolyn K. Lee and Robert E. Cole describe and compare a
community-based development model for knowledge creation vs. a firm-based one. The
paper is titled “From a Firm-Based to a Community-Based Model of Knowledge Cre-
ation: The Case of the Linux Kernel Development”[9]. Similar for the research team
around Audris Mockus and the paper “A Case Study of Open Source Software Devel-
opment: The Apache Server”[11]. It explicitly tries to compare the OSS development
process to the commercial world and concludes that hybrid forms might work best.

However, this work does not try to emphasize advantages nor disadvantages of the
underlying process, it takes it as it is. As this paper primary focuses on the Linux
kernel as one of the large OSS projects, the corresponding process is especially of inter-
est. However, a lot of related documentation and information can be transformed and
applied to the other projects involved in this work, too. It is not exclusively confined
to the Linux kernel. For technical development documentation, the book “Linux Kernel
Development”[10] by Robert Love can be mentioned at this place. But also Andi Kleen’s
paper “On submitting kernel patches”[8] should not remain unmentioned because it can
provide good guidance for both technical patch creation and submission. An all-in-one
document trying to cover both process and technical related matters is provided by the
Linux Foundation1 in form of “How to Participate in the Linux Community - A Guide
To The Kernel Development Process”[5].

When focusing on the patch as single object of research, “Small Patches Get In!”[14]
provides deeper insight into the relationship between emails and patches and their sub-
mission and acceptance within different open source projects.

For planning the submission process of changes targeted for inclusion into the Linux
kernel, its release criteria is playing an important role. This and an evaluation of which
patches are most likely accepted and which are not is provided by a paper headed with
“Release criteria for the Linux kernel”[7].

1http://www.linuxfoundation.org

3

http://www.linuxfoundation.org

2. Literature Review

What most of the mentioned documents have in common is the fact that the process
is described rather theoretically, as it might come true in an ideal world. However, this
thesis concentrates on the actual sequence of incidents and obstacles one has to face
on the way. In a way, it proves or refutes the validity of available technical process
documentation for the different projects. It makes use of the already available research
results, process and software documentation, tries to define a schedule for adequate large
open source contributions and finally recapitulates the outcome and consecutive process.
Research covering exactly this approach is rare.

4

3. Research Design

Choosing the appropriate research method is one of the first steps within a scientific
research project. It should be chosen according to the specific research question you are
asking and has imminent impact on the results and generality of the research results.

In the handled case, the chosen research topic is a real world example, driven and
enclosed into the processes outlined by big open source projects. Thus, choosing an
appropriate research method a priori disqualifies some of the available possibilities. One
of those is the controlled experiment. According to Easterbrook et al. [6], a controlled
experiment requires a clear hypothesis and an controllable environment. Usually soft-
ware engineering experiments require human subjects to perform a specific task under
certain circumstances, looking at certain predefined variables. As far as possible, those
tasks need to be performed without heeding attention to the context, where influence
needs to be minimized as much as possible. Especially because of this context, which
obviously plays an important role in the considered project, this research topic cannot
be performed as an experiment. Also the other mentioned attributes for an controlled
experiment do not quite fit here.

Other existing research methods like survey researches or ethnographies obviously do
not fit the criteria taken as a basis for this project.

Another possibility for a suitable research method would be the case study. In contrary
to the controlled experiment where a clear research hypothesis is needed, the case study
requires a clear research question. For the technical issue handled here, the question is if
it is possible to get a new feature into large open source projects, here the Linux kernel
and others, within a pre-defined time frame. This question is deeply embedded into its
context and the obstacles resulting from human interaction, acceptance, code quality
and correctness.

During the whole project, and for the case study’s results to become valid, the project
and involved human interaction needs to happen without the involved parties being
aware of the fact that they, or the project they represent, are part of an ongoing research.
A case study is some kind of experiment in real world and thus it needs to be taken
explicitly care of to not mention this fact during any future communication. It would
drastically falsify the collected data.

The used approach also fits the criteria of a typical case. It is no special concern to
get a new feature into an open source project and thus improving the support for a
hardware device. Companies releasing computer devices for the global market are doing
this on a regular basis. A lot of hardware vendors are trying to support their hardware
by software drivers written and maintained by themselves. Examples include NVIDIA

5

3. Research Design

or AMD for their graphics drivers or Intel for various devices like network cards, USB
or audio devices.

Another important attribute of a case study is the source of information. Qualitative
data is often collected via observations. According to Easterbrook et al. [6], this needs to
be performed with respect to a well-defined unity of analysis. In this case, this would be
the specific development process found in the Linux kernel project. Also, the context, like
people, sub-projects, time and different interests needs steady consideration. And this
context is also the most important weakness of a case study. Finding the right balance
between external factors and the actually performed tasks is a major challenge of this
thesis. This needs to be always taken into account when drawing conclusions. Due to the
nature of the case study, those conclusions can be hardy confirmed due the uniqueness
of the actions performed and the resulting reactions. Whether the case study approach
really turns out to be appropriate will be shortly reconsidered after the technical problem
has been explained (cf. “Reevaluation of Case Study Preconditions”4.3).

Although the case study seems to be the most obvious choice, other possibilities exist.
Easterbrook et al. [6] defines a research method called Action Research. Although
considered contentious throughout scientific researchers, it is described as to “Solve real-
world problem while simultaneously studying the experience of solving the problem”.
And that fits the nature of this research project quite well. The key criteria for judging
the quality of an action research is composed of two aspects: First, the problem must be
authentic, which it is, due to the fact that it solves a real world problem. Second, there
needs to be authentic knowledge outcomes for the participants. The success or failure
of the feature implementation should fulfill this requirement.

The resulting research method which will be used in this thesis will be a so called
Mixed-Method Approach[6], consisting of a case study combined with action research.
Combining a more scientific method with a practical component seems to be the most
appropriate here.

6

4. Solving a Real-World Problem

In order to accomplish this case study from start to end, we need an appropriate real
world example. One that has the potential to represent a real problem which might
as well be pursued by a real word company. It needs to solve a technical problem or
to implement a new feature. On the one hand, the problem or feature must not be
specifically designed to fit a research project like this. Simultaneously, it needs to solve
a problem or to implement a feature which is obvious and can be easily understood as a
problem which needs a solution and thus is most likely to be accepted by the open source
community. On the other hand, it must not be too complex, so that it is theoretically
solvable in the given limited time frame.

In this thesis, the chosen feature focuses on dock stations. A dock station is a separate
device designed to extend and improve the hardware limitations of mobile devices such
as laptops, but also of smartphones or tablet computers. All of them are specialized
computers which in many cases are limited to the hardware components a manufacturer
includes at shipment. Having the possibility for changing the hard disk or expanding
the laptop via device slots is quite common, yet still limited. This is where dock stations
come handy. They can be mechanically attached to the laptop, extending it with ad-
ditional connections like USB or video, adding expansion slots for PCMCIA devices or
hard disks, and can have built-in devices like more powerful graphics adapters or sound
cards.

From an operating system perspective, supporting dock stations in a general way
is most often solved with the Advanced Computer Programming Interface ACPI [1].
The ACPI specification “provides an open standard for device configuration and power
management by the operating system”[16]. Via ACPI, the operating system is able to
logically attach or detach a dock station device to a computer. The respective ACPI
methods are DCK for the connection establishment and EJECT for the removal. In
most cases, the devices contained in the dock station are then initialized and managed
via the usual operating system device drivers.

There are also those devices, which can be dynamically plugged into a dock station
with an appropriate slot. Very often, those devices are additional batteries or hard disks,
to extend the runtime of a mobile device or to expand the storage capacity.

When targeting the personal computer market, operating systems need to support
those special devices more extensively than just making the storage or the battery ca-
pacity available to the system. The user wants to and needs to interact with those
devices. For instance, having an additional battery attached to the system, the user
likes to know the remaining capacity, the aggregated total capacity or the time left tak-

7

4. Solving a Real-World Problem

ing all available batteries into account. For storage devices, which are often used as
sole data or backup additions, even more support is anticipated. Nearly always when
storage is involved, a file system which contains and manages the data is in place. Those
file systems have special limitations and certain requirements when it comes down to
data integrity. Usually you are not allowed to suddenly unplug a hard disk which is
still visible and attached to the software stack. File systems have special precautions to
prevent data corruption in those cases, however, the risk for damaged data rises. And
even if the file system always handles such device removals properly, cached data in the
operating system may not have been flushed to the disk when the unplugging occurs.
Also, poorly written software might not perfectly deal with a suddenly disappearing
storage device. All those reasons make it necessary to tell the operating system and
the user about an imminent device removal before it actually occurs. In GNU/Linux
based operating systems, this is performed by a user action called Safely Remove Device.
Similar mechanisms exist in Microsoft Windows or Apple Mac OS X.

And that is where the specific characteristic of dock stations have to be taken into
account. Usually a device like a hard disk is directly attached to a laptop via USB,
SATA or another connection possibility. Not so with devices which are attached to a
dock stations. Those devices directly depend on the presence and proper connection of
the dock station to the supporting computer device. Once the dock stations is removed,
at the same time the other device disappears. This obstacle makes it necessary to make
the operating system, and last but not least, the user, aware of this direct link. This is
most often done via graphical notifications and optional possibilities to manually eject
or remove a device.

For this to accomplish, it is mandatory for the operating system to be aware of the fact
that the hotpluggable device is directly bound to the dock station or any miscellaneous
expansion slot. This might sounds self-evident, however, still misses a proper implemen-
tation within the Linux kernel and projects up the stack like the desktop environments
and possible middle ware components trying to tie those two levels together.

4.1. Architecture of Modern GNU/Linux Based
Operating Systems

In modern GNU/Linux distributions, you find a three layer model. At the bottom, there
is the actual operating system, the Linux kernel. For communication with userland1

applications, it exports a virtual file system called sysfs. Userland applications make
use of that filesystem to get kernel internal information about devices, system state or
the like. The current valid state, for instance attached or detached, of a dock station or

1“Userland usually refers to the various programs and libraries that the operating system uses to
interact with the kernel: software that performs input/output, manipulates file system objects,
etc.”[15]

8

4.2. Required Implementations

hotpluggable device needs to be exported via this sysfs. On top of it, you find a kind of
system level applications, also called daemons. They usually serve to abstract the very
technical and low level information provided by the kernel, to recycle them for easy use
by higher level applications. Higher level applications are usually programs running in
a graphical desktop environment. Those application receive, modify and query kernel,
and thus device information via inter process communication (cf. D-BUS2) through the
system level daemons.

4.2. Required Implementations

In this specific example, the bottom part is the Linux kernel3, the system level daemon
providing information about storage devices is UDisks4 and the higher level application
is the GNOME desktop environment5. The kernel receives information from the device,
exports it via sysfs, UDisks picks it up and forwards it to the GNOME desktop. So it is
crucial to this feature implementation and submission process to create and submit each
change after another. The changes for the Linux kernel need to be done and submitted
before the changes for UDisks. Same applies for UDisks and GNOME.

In the end, the responsible desktop application shows an appropriate reaction to the
user which can perform the desired action, like ejecting the device or refraining from
unplugging the dock station. Two central questions need to be answered with a concrete
implementation:

1. “Which devices are in a dock station?”

2. “Which devices are in a laptop bay?”

So the following actions are supposed to be performed:

1. Evaluation of available hardware and the technical realization of the involved dock
station support.

2. Extending the ACPI dock station driver within the Linux kernel to be able to
logically assign a hotpluggable device, such as a hard disk, to a bay device slot or
to a dock station.

3. Once the previous two preconditions are fulfilled, the middle ware of the GNU/Linux
based operating systems needs to be inspected. Higher levels like the desktop en-
vironments need a proper way of getting the device information, for instance if a
hard disk is actually attached to a dock station or not. This service will provided
by UDisks.

2http://www.freedesktop.org/wiki/Software/dbus
3http://www.kernel.org
4http://www.freedesktop.org/wiki/Software/udisks
5http://www.gnome.org

9

http://www.freedesktop.org/wiki/Software/dbus
http://www.kernel.org
http://www.freedesktop.org/wiki/Software/udisks
http://www.gnome.org

4. Solving a Real-World Problem

4. Graphical integration and user interaction with attention to usability within a
popular GNU/Linux desktop environment. At this place, the GNOME desktop
environment version 3.0 needs to be modified.

4.3. Reevaluation of the Case Study Preconditions

The described enhancements which have to be performed are fitting the preconditions
for the case study handled in this research project pretty well. To be recalled, those
preconditions where:

1. Solving a real world problem which might also be taken as an industry goal for a
company trying to put a new device on the market.

2. It solves a problem or in this specific case, it implements a new feature.

3. Manageable and doable within the given limited time frame.

4. It is a feature that obviously needs a solution and thus will be most likely accepted
by the open source community.

10

5. Formalities of the Patch Submission
Process

Open Source software is different. At least when compared to traditional proprietary,
closed source, company driven development models. Although most large open source
projects follow the bazaar style[13] of handling their code base, each project has its own
ways of communication, maintainer and contributor interaction, code quality require-
ments, coding style and so on. So before creating code which needs to be made available
to the different projects, a few preconditions need to be considered for each of them.
Those basically are:

• Source Code Availability and Access: There are a bunch of different tools
and methods of how to handle source code:

“Revision control, also known as version control and source control
(and an aspect of software configuration management), is the manage-
ment of changes to documents, computer programs, large web sites, and
other collections of information.”[18]

In the open source area, different revision control systems are used: CVS, SVN or
GIT1, just to mention a few. For instance, while CVS and SVN rely on a single
code location, GIT uses a decentralized approach where every developer could use
his own code tree.

• Release Cycle: One important aspect, especially for the subsequent chapter
about defining the proper development schedule (cf. 6), is the Release Cycle to
deal with. In this context, the release cycle is the period of time from one officially
released version, until the next is made publicly available. It can be fixed, say
monthly or yearly, or variable, depending on the software stability or bug status.

• Submission Channel: When submitting new code or code changes to an ex-
isting open source project, a lot of different submission channels are possible.
Some project maintainers require the respective patches to be posted to some bug
tracking system like Bugzilla2 or made available via a mailing list which enforces
preliminary review. In turn, others like to see code changes made available via

1http://git-scm.com/
2http://www.bugzilla.org

11

http://git-scm.com/
http://www.bugzilla.org

5. Formalities of the Patch Submission Process

local repositories like GIT or by simple email submission. The appropriate chan-
nel is one of the keystones of an successful submission strategy. If the responsible
maintainer needs to perform some circumstantial task to just have a look at the
code changes or is not even aware of a change request in the first place, the chances
for success significantly decrease. So this needs to be individually be taken care of
for each involved project.

• Coding Style: One of the key skills a good programmer needs is the ability
to adapt his programming style to the project he is targeting. The code base
which needs to get extended or modified defines the coding style the existing
maintainers and contributors have agreed on and are expecting. Depending on
the programming languages, coding styles might vary significantly. When project
members are reviewing patches, they expect to be these patches in the same style
the existing code is in.

• Code Quality: True, code quality should be out of question, always. It should be
equally high for every project. However, certain projects might cope better with
small mistakes than others. Missing a check or a proper debug output might get
accepted in one project and might be the reason for dismissal in another. Setting
the same high standards for all written code will give the highest possibility for
the changes to be accepted.

• Patch Format: Besides code quality and coding style, there is also some kind
of meta information some projects require to be submitted alongside the specific
code change. This might be meta information like the author’s name and email
address, other involved people in the patch creation process or statistics of the
code changes. This helps projects to track modifications for future reference.

Throughout the whole open source community, code changes are nearly always
created by using a program called diff 3, which compares the textual differences
between two files. This difference is then submitted to the respective project
for inclusion. The project maintainer or an respectively entitled member applies
the code change via a program called patch4. Besides the advantage that the
submissions become very small in contrary to a full source code submission, there
is another important reason for sending such “diffs”: The review process becomes
a lot more easy, because you do not have to review the source code as a whole,
but can solely look at the changes. Imagine a one line code change in a file of 5000
lines of code. This would not be manageable without a tool chain like diff and
patch.

Another important aspect is the patch format, especially the logical separation
of changes. Some projects might prefer one big patch containing all the involved

3http://www.gnu.org/software/diffutils/
4http://www.gnu.org/software/diffutils/

12

http://www.gnu.org/software/diffutils/
http://www.gnu.org/software/diffutils/

changes. Another might like to see a new feature to get in via small conceptional
separated patches which can be reviewed individually. Thus, how the code changes
should be submitted heavily depends on the project requirements.

• Process of Approval: When patches are submitted via an appropriate submis-
sion channel, the usual sequence is that they get reviewed and if the quality, the
style and the request is valid, they are approved. There are different ways how
this approval might be performed, though. It might happen implicitly, by the
changes just getting committed to the proper code repository. Or it might happen
with direct actions done by the responsible project members, by giving so called
acknowledgements (abbrev.: ACK). Individual maintainers of specific areas of the
project or code are signalling their approval via mails or by other means which
brings another member with rights to perform code changes to actually apply the
changes. However, for the patch submitter, only the point in time when the patch
got accepted is relevant, not especially the process.

Due to the nature of open source projects and their diversity when it comes down
to member interaction, source code management and approval mechanisms, each of
the above items need to be considered independently for each related project. So this
information is indispensable when it comes to the feature implementation and patch
creation.

A lot has been written about these items, however, not too much from a scientific
perspective. Most documents are either provided by people directly involved in the
projects, such as maintainers and contributors, or are part of the project documentation
(cf. 2). The characteristic all those approaches have in common is the fact, that they
try to provide a guideline for potential new contributors to prevent possible mistakes
which can be repeatedly seen. There is a certain similarity to so called Frequently
Asked Questions (FAQ), just in a technical manner. Not all projects have these kind of
guidelines though, some have more, some less.

For the specific feature which needs to be implemented within this research thesis,
three different projects are expected to be touched. Those are the Linux Kernel5, a
middleware project called UDisks6 and the GNOME desktop environment7. The most
detailed project documentation, just because it is the largest and serves as the base for
all GNU/Linux based distributions, is available for the Linux kernel.

5http://www.kernel.org
6http://www.freedesktop.org/wiki/Software/udisks
7http://www.gnome.org

13

http://www.kernel.org
http://www.freedesktop.org/wiki/Software/udisks
http://www.gnome.org

5. Formalities of the Patch Submission Process

5.1. The Linux Kernel

The most comprehensive part of kernel documentation is located at the source tree8 of
the code repository itself. Most relevant files for this project are SubmittingPatches [4],
ManagementStyle[3] and MAINTAINERS.

Before going into details, the Linux kernel development structure needs to be described
briefly. The Linux kernel code and its member affiliations are basically separated into
so called subsystems. There are a couple of them, like storage, power management,
video, cryptography, input devices or sound. Each of those subsystems has one or more
maintainers, also called kernelmanagers [3] or subsystem maintainers. Each of those
kernel managers most often have a own source tree where they manage and track the
code changes concerning their specific subsystem. The lead maintainer is Linus Torvalds
himself. Every code change needs to be committed by him before it will end up in new
official kernel release on kernel.org. However, the individual code reviews, approvals and
contributor communication for specialized areas are handled by the respective subsystem
maintainers and specialists working in these areas. The primary communication within
the kernel project is happening on various mailing lists, at least one for each subsystem.
Whenever a patch is sent to such a list, it needs to be reviewed. Either by the subsystem
maintainer himself or by a reputable community member working in this area. Those are
signalling either their acknowledgement, which should result in the code changes being
committed to the according source tree, or they are signalling their disagreement. This
might happen because of various reasons such as code quality, coding style, functionality
or design flaws.

The Linux kernel has a variable Release Cycle. Fixed release deadlines cannot be
expected. This can be exemplified by the following citation by Andrew Morton posted
to the Linux development list (LKML9):

“Nobody knows when a kernel will be released, because it’s released ac-
cording to perceived bug status, not according to a preconceived timeline.”

Taking the previous 12 releases into account, it has an average release cycle of 79 days,
ranging from 65 days (kernel 3.0.0) to 93 days (3.1.0). Table 5.1 shows all the relevant
data.

The time frame from one release to the next can be divided into different time slots.
Immediately after a new kernel version is released, a so called merge window opens for
two weeks. This is the time Linus Torvalds accepts new code coming from individuals,
the subsystem maintainers or other source trees. Especially comprehensive code changes
like support for new devices or new features get accepted in this phase. Once the merge
window closes, the first release candidate (RC) is tagged and made public. Starting
from that point in time, only minor code changes such as coding style fixes, bug fixes

8http://git.kernel.org/
9https://lkml.org/

14

http://git.kernel.org/
https://lkml.org/

5.1. The Linux Kernel

Kernel Version Release Date Days of Development
2.6.30 2009-06-10 79
2.6.31 2009-09-09 91
2.6.32 2009-12-03 85
2.6.33 2010-02-24 83
2.6.34 2010-05-16 81
2.6.35 2010-08-01 77
2.6.36 2010-10-20 80
2.6.37 2011-01-05 77
2.6.38 2011-03-15 69
2.6.39 2011-05-19 65
3.0.0 2011-07-23 65
3.1.0 2011-10-24 93
3.2.0 2012-01-05 73

Table 5.1.: Kernel Releases Since July 2009 [2]

or isolated modifications not touching the main areas are accepted. Until the kernel
version is final, subsequent release candidates are tagged until the final incarnation is
considered to be ready.

However, during the whole time, the subsystem maintainers collect all kinds of new
code. They often manage different source trees, one for the kernel currently worked one
and one for upcoming versions. This way, they can accept extensive changes without
endangering the quality of the release candidates. The changes targeted for future
releases can be considered “queued” until the next merge window opens. So it is possible
to send patches whenever they are ready, although it is not sure the they will find a lot
consideration when posted outside of the merge window.

For further reference, the file ManagementStyle[3] has a lot of details on this manage-
ment process.

SubmittingPatches [4] can be considered a very detailed document for providing a
guideline for new contributors. It is titled “How to Get Your Change Into the Linux
Kernel” and is summarized as follows:

“For a person or company who wishes to submit a change to the Linux
kernel, the process can sometimes be daunting if you’re not familiar with “the
system.” This text is a collection of suggestions which can greatly increase
the chances of your change being accepted.”[4]

It is the central starting point for answering the mentioned preconditions stated above.
For the Submission Channel, the document clearly states the various mailing lists10

10http://vger.kernel.org/vger-lists.html

15

http://vger.kernel.org/vger-lists.html

5. Formalities of the Patch Submission Process

as primary targets. SubmittingPatches refers to the file MAINTAINERS which has
the detailed subsystem meta information. For the concrete project handled here, the
relevant mailing lists are linux-acpi11 where Len Brown is in charge of approvals and
linux-ide12, for which Jeff Garzik is the responsible kernel manager. Because of the
fact that the new feature is spawning two different subsystems (ACPI and SATA), the
Process of Approval is a little more complicated here. Both maintainers need to
signal their agreement before the according code changes are accepted and can go their
way into the main tree.

SubmittingPatches also provides clear guidance on the Patch Format, how they need
to look like and which meta information needs to be sent along with it. An example of a
patch mail fulfilling the requirements can be found in the appendix (cf. A.1.1). Chapter
7.1.1 contains an exemplary step by step guidance on how to create, adapt and send a
patch for inclusion into the Linux kernel.

The file also has some minor guidelines for the Coding Style. It rather refers to the
file CodingStyle for more detailed information on this topic.

The Code Quality is not mentioned explicitly, however, can be considered quite
sophisticated. This is also depending on the concrete maintainer in charge, although in
the end, all changes need to pass Linus Torvalds’ final judgment.

5.2. UDisks

After looking at the Linux kernel as one of the most active, largest and important open
source projects ever existed, attention needs to be paid to a smaller projects, UDisks. It
is a middle ware program which basic functionality is to abstract and manage storage
devices within a computer system. It is located between the kernel and a possible
graphical desktop environment. Its main purpose is to abstract storage devices (e.g.
hard disks and flash storage) and their functionality by providing methods for querying
and manipulating them. Those methods can be easily used by higher levels like graphical
desktop environments via inter process communication (cf. D-BUS13).

UDisks is maintained and developed essentially by a single person. Also because of
the project size, this seems to make the patch submission process more straightforward.
For instance, Patch Approval is basically done by this single person.

Furthermore, a file called HACKING is located in the source code repository14. It
contains basic information about how to get involved and if you do, how the patches
should look like. It states that Coding Style should be based on the existing source
code and how the canonical Patch Format should look like. The web site7 shows that

11linux-acpi@vger.kernel.org
12linux-ide@vger.kernel.org
13http://www.freedesktop.org/wiki/Software/dbus
14http://cgit.freedesktop.org/udisks/tree/

16

http://www.freedesktop.org/wiki/Software/dbus
http://cgit.freedesktop.org/udisks/tree/

5.3. The GNOME Desktop Environment

development mailing list called devkit-devel15 should be used as Submission Channel
for features and patches. GIT is used as Source Code revision control system where
the code is publicly available to everyone. The Release Cycle is not fixed, depending
on distribution releases, acuteness of bugs such as security relevant fixes and feature
status. Changes might be refused directly ahead of an upcoming release, but should be
generally accepted at any time.

5.3. The GNOME Desktop Environment

The second large open source project this thesis has to deal with is the GNOME Desktop
Environment. Quoting Wikipedia:

“GNOME [. . .] is a desktop environment and graphical user interface that
runs on top of a computer operating system. It is composed entirely of free
and open source software. It is an international project that includes creat-
ing software development frameworks, selecting application software for the
desktop, and working on the programs that manage application launching,
file handling, and window and task management.”[17]

In contrary to the rather meager information provided for the development process
of UDisks, GNOME is more comprehensive in this regard. The base for Submission
Channels for both previous mentioned projects were mailing lists. Not so with GNOME.
Within the GNOME Love Project16, which tries to explicitly provide help for new contri-
butions, a sub page deals with the matter of Submitting Patches17. It states: “Send the
patch to the project by attaching it to the relevant bug report in GNOME Bugzilla”18.
That is the same place where new patches are reviewed and approved. The same web
site also has information about Coding Style, which should match what is already
there, and about the Patch Format, which is similar to the one which can be found
within the Linux kernel. Once again, GIT is used as source code repository and its
Source Code is publicly available.

The GNOME project has a quite fixed road map and Release Cycle18. Current
development is active for version 3.4 which is planned to be released on 28 March 2012.
However, from a contributor point of view, it does not really matter. As soon as the
changes are ready, they are submitted. And due to the fact that GNOME is the last
project which will be touched, the changes will turn up in the next release.

15http://lists.freedesktop.org/mailman/listinfo/devkit-devel
16http://live.gnome.org/GnomeLove
17http://live.gnome.org/GnomeLove/SubmittingPatches
18https://live.gnome.org/ThreePointThree

17

http://lists.freedesktop.org/mailman/listinfo/devkit-devel
http://live.gnome.org/GnomeLove
http://live.gnome.org/GnomeLove/SubmittingPatches
https://live.gnome.org/ThreePointThree

5. Formalities of the Patch Submission Process

18

6. Definition of a Submisson Strategy

Three different project, each with its own development process. Sure, similarities exist
for all of them, like the source code management system or the way coding style is
enforced. However, all are open source projects managed by individuals and not driven
by a company aligning a solid road map or schedule. Having three different project
depending on each other, defining a concrete and fixed schedule for this thesis is close
to impossible.

It gets even more complicated when a new feature is not confined to one single project,
but touches different open source efforts. This makes feature development quite unpre-
dictable, especially for companies. Trying to ship a new hardware device to the market
and not knowing when the according software drivers will be ready is one of the big
obstacles when dealing with open source software designed for GNU/Linux based oper-
ating systems. However, this ambiguity cannot always be prevented, even outside the
open source community. Development resources are often bound to budget, which in
turn is limited, both by size and time.

So when trying to define a schedule or road map, the circumstances need to be ex-
plicitly considered, even more than within traditional feature development cycles.

This research project tries to answer the question, if it is possible to circumvent those
obstacles and to prove or fail the effort of integrating a new feature into the whole
GNU/Linux stack, from the top (desktop) to the bottom (OS/kernel). All this confided
to a predefined time frame. Start of the project will be November 15th 2011, end will
be targeted for end of February 2012. This gives three and a half month to finish all
required work. Three month was the original target, however, got extended by the
circumstance that around Christmas and New Year, development and reviewer efforts
in the open source community are often reduced.

6.1. Stage 1 - Development and Submission of Linux
Kernel Parts

The further the required action is in the future, the fuzzier a prediction can be. Luckily
the Linux kernel is the first projects that needs attention, which in turn is the most
complex. Having described the exact management process in chapter 5.1, aligning the
strategy accordingly is the next logical step.

The last kernel release was on October 24th. Taking an average release cycle of 79
days (cf. 5.1), the next merge window could open around 11th January, 2012. If all

19

6. Definition of a Submisson Strategy

Milestone Date
Project Start / Start with kernel work 2011-11-15
Initial Kernel Submission 2011-12-11
Kernel Merge Window Opens 2012-01-11
Kernel Merge Window Closes 2012-01-25
Submission for UDisks 2012-02-01
Submission for GNOME 2012-02-15
Project End 2012-02-29

Table 6.1.: Predicted Submission Schedule

the work should be finished by end of February 2012, all kernel changes need to be
submitted, reviewed and committed to at least one of the subsystem maintainers source
code trees by the moment the merge window opens. If this time frame is missed, the
next but one kernel release needs to be waited for, which will fail the initial plan. So
submitting the patches as early as possible is crucial to the success of this project.

So the plan is to do the first submission of the patch set by 11th December. This will
give the kernel developers a whole month for the review and acceptance, including bug
fixing and possible resubmissions. In parallel and during idle times, when patches have
been submitted but feedback is outstanding, work on the userland parts can be done.

During the bi-weekly merge window, predicted start on 11th January, the responsible
subsystem maintainer will send his modifications, including the changes related to this
thesis, for inclusion into the main Linux tree so Linus Torvalds can pick them up (cf.
6.1).

6.2. Stage 2 - Development and Submission of Userland
Parts

Once all needed changes are in the main Linux tree, the corner stone has been set. It
is the base for the upcoming work which is entirely located in userland. Ideally, the
moment the merge window closes, the work related to the first project, UDisks, has
already been finished, or is at least near to completion. So within the following week,
until 1st February, 2012, the UDisks changes can be officially submitted. Accordingly,
the GNOME changes which have the previous changes as a dependency, can be finished
and sent for inclusion into the GNOME project within the subsequent two weeks (cf.
6.1). This leaves a buffer of another 14 days if something goes wrong or delayed. Finally,
the project should be officially finished on 29th February, 2012.

20

7. Initial Feature Design and
Implementation

After an appropriate submission strategy has been aligned, the concrete feature design
and implementation starts. Due to the nature of the open source projects to deal with,
especially the Linux kernel, this chapter cannot be finished conclusively. It will rather
include the initial design and implementation, but skips further modifications, change
requests or bug fixes. The continuation will then be done by the chapter about the
actual submission process (cf. 8). Both chapters will be mixed, because the received
feedback will inevitable lead to coming back to the practical coding work. To requests
on coding style, interface definitions or overall design must be paid attention and acted
accordingly. Resubmissions which will get back and forth will be the logical consequence.

7.1. Kernel Space

The first thing to do, which is one of the characteristics of open source development,
is to check if the feature to be implemented has already been done or at least tried
before. While searching the mailing list archives for linux-acpi1, a thread2 related to the
targeted feature could be found. It is a series of five patches, promising to implement
exactly what is tried to accomplish here. It contains the following patches:

[PATCH 1/5] scsi: Export scsi_bus_type

[PATCH 2/5] libata: Bind the Linux device tree to the ACPI device tree

[PATCH 3/5] libata: Migrate ACPI code over to new bindings

[PATCH 4/5] acpi: Add support for linking docks to the objects they contain

[PATCH 5/5] libata: Add links between removable devices and docks

As can be seen, four of five patches are targeted for the SATA subsystem, namely
the patches tagged with “scsi” and “libata”. The fourth patch is targeted for the ACPI
subsystem.

Those patches have not received any feedback since September 2010 and the author
did not, for whatever reasons, enforce them. They have been based on a kernel code
base between version 2.6.35 and 2.6.36. Understandably, because a whole year has passed

1http://www.spinics.net/lists/linux-acpi/
2http://comments.gmane.org/gmane.linux.acpi.devel/47378

21

http://www.spinics.net/lists/linux-acpi/
http://comments.gmane.org/gmane.linux.acpi.devel/47378

7. Initial Feature Design and Implementation

since then, they did not apply cleanly to the current code base. After fixing them to
apply, a hardware test unveiled that they even do not work as expected. Because there
seems to be no obvious error, further debugging with real hardware was needed. After
a lot of debugging, two problems have been identified. One in the SATA and one in
the ACPI subsystem. After adequate testing, the changes are ready to be packed into
concrete patches for submission.

7.1.1. Patch Set Creation: Iteration One

After the technical implementation problems are solved, the concrete patches for sub-
mission have to be created. The following sequence is heavily oriented on the guideline
found in the documentation file SubmittingPatches [4] and can be considered standard
procedure:

1. Check out the relevant main Linux development tree3 to get the source code of the
Linux kernel.

2. Perform the necessary changes to the source code files. In this specific case, two
logical separate changes, one for the SATA and one for the ACPI subsystem, are
needed. This will give the patches a higher change of being accepted, for multiple
reasons:

a) The changes are easier to review, because they do not span multiple subsys-
tems or logical code paths.

b) Each individual maintainer can give their approval independently for each
subsystem.

c) If there are possible future problems, it is easier to only revert the responsible
patch instead of reverting all changes at once.

3. Make sure the changes fulfill the coding style requirements.

4. For each of them, create a “unified diff”4 output.

5. Create an appropriate patch description. One one-line statement, which will be-
come an unique identifier for the patch. Then create a multiple line description,
containing a detailed explanation of the problem the patch is solving, what it is
doing and further optional references. Both descriptions will become part of the
commit message in the main Linux development tree of Linus Torvalds.

6. Select the proper E-mail destination. Judging from the corresponding MAIN-
TAINERS file contained within the Linux kernel documentation, this is linux-
acpi@vger.kernel.org for the ACPI subsystem and linux-scsi@vger.kernel.org for

3git clone https://github.com/torvalds/linux.git
4diff -up, -u: “unified diff format”, -p: “show relevant function the change is in”

22

https://github.com/torvalds/linux.git

7.1. Kernel Space

the SATA subsystem. The created patch set need to be sent to both destinations
simultaneously, because it contains changes spawning the two subsystems.

7. Create the proper list of additional recipients, who will be put into the carbon copy
(CC) list of the mails. Obviously this is the author of the original five patches found
in the mail archives. Other additional recipients do not seem to be necessary.

8. Prepare and send the E-mails. At this point, a quotation from SubmittingPatches [4]
is supposed to describe the mail content.

The canonical patch subject line is:

Subject: [PATCH 001/123] subsystem: summary phrase

The canonical patch message body contains the following:

- A "from" line specifying the patch author.

- An empty line.

- The body of the explanation, which will be copied to the

permanent changelog to describe this patch.

- The "Signed-off-by:" lines, described above, which will

also go in the changelog.

- A marker line containing simply "---".

- Any additional comments not suitable for the changelog.

- The actual patch (diff output).

Further reading about the concrete patch and E-mail format can be provided by “The
Perfect Patch”[12] from Andrew Morton.

As a result, a number of 8 patch mails are created (cf. A.1.2). The first mail is a
summary of the patch set, what it does and what it is intended for:

[PATCH 0/7] acpi/libata: Express dependencies for devices on dock stations and bays

To quote in full:

Patches 1 through 5 are just a refresh of the patches from Matthew

Garrett sent to this list in September 2010 [1]:

23

7. Initial Feature Design and Implementation

[PATCH 1/7] scsi: Export scsi_bus_type

[PATCH 2/7] libata: Bind the Linux device tree to the ACPI device tree

[PATCH 3/7] libata: Migrate ACPI code over to new bindings

[PATCH 4/7] acpi: Add support for linking docks to the objects they contain

[PATCH 5/7] libata: Add links between removable devices and docks

Patches 6 and 7 make the patches actually work on my test hardware

(Thinkpad x60/Thingpad T60) by fixing some minor issues.

[PATCH 6/7] libata: Generate and pass correct acpi handles

[PATCH 7/7] acpi: Prevent duplicate hotplug device registration on dock stations

Regards,

Holger

[1] http://comments.gmane.org/gmane.linux.acpi.devel/47378

A finished, exemplary mail body looks like that:

Fix ACPI handle generation for device handles and pass the correct

handles to the dock driver.

Signed-off-by: Holger Macht <holger@homac.de>

libata-acpi.c | 10 +++-------

1 file changed, 3 insertions(+), 7 deletions(-)

[diff output truncated]

The complete content of the first iteration of patches can be found in appendix A.1.1.

7.2. Userland: UDisks and GNOME

Before moving on to the actual patch submission process, the userland projects (UDisks
and GNOME) need some consideration. In concrete, the UDisks project need to be
extended to represent the required changes. It needs to pick up the information regarding
dock stations provided by the kernel sysfs interface and is intended to pass them on
to desktop applications via inter process communication (D-Bus). Then, the GNOME
desktops needs an appropriate representation for the user. Both will be, as time permits,
taken a look at after the first submission of kernel patches, when feedback has been
received and in turn is supposed to be incorporated.

24

8. Feature Submission Process

In short, the submission process is summarized in the following table:

Milestone Date
Project start / Start with kernel work 2011-11-15
Initial kernel submission 2011-12-06
Merge window for 3.3.0 opens, reminder mail sent 2012-01-05
ACPI maintainer sends pull request to Linus Torvalds 2012-01-17
New remainder for ACPI subsystem maintainer
ACK from ACPI subsystem maintainer 2012-01-18
Initial feedback for minor issues received
ACK for valid patches from SATA subsystem maintainer
Resubmission 1, adding two new patches 2012-01-20
ACK from SATA Maintainer 2012-01-21
Queue for linux-next 2012-02-09
Community member has problems with the patch set - Fix required 2012-02-18
Additional two patches are accepted 2012-02-21
Project end 2012-02-29

8.1. Initial Submission

The first submission of Linux kernel patches (cf. 8) has been done on 6th December,
2011. As SubmittingPatches proposes with “After you have submitted your change, be
patient and wait.”, it is done. Following the release cycle of the release candidated
of the Linux kernel, the release of final 3.2.0 kernel and thus the opening of the next
merge window got closer and closer. On 5th January, 2012, kernel 3.2.0 was final and
with it, the merge window for 3.3.0 opened. However, without any feedback on the
submitted patches, it seemed to be very unlikely that they would be included. Thus, a
reminder mail1 asking the original author and the subsystem maintainers for feedback
has been prepared. Again, no feedback. On 17th January, 2012, one day before the
merge window closes, Len Brown, the ACPI subsystem maintainer sent a pull request2

to Linus Torvalds, including the relevant changes from the ACPI subsystem for inclusion
in kernel 3.3.0. The patches related to this project were not included, though. Hereupon,

1http://comments.gmane.org/gmane.linux.scsi/71386
2http://permalink.gmane.org/gmane.linux.kernel/1240185

25

http://comments.gmane.org/gmane.linux.scsi/71386
http://permalink.gmane.org/gmane.linux.kernel/1240185

8. Feature Submission Process

another reminder mail3 was sent, asking if there is a specific reason why the patches have
not been considered. The result: An approval from the ACPI subsystem maintainer on
18th January, 2012. However, only for the parts concerning the ACPI subsystem.

8.2. Missing the First Kernel Release Cycle

The parts belonging to the SCSI still waited for review. As already suspected, and
because the 18th was supposed to be the day the merge window closes, the approval came
too late for a possible inclusion in kernel 3.3.0. However, and after the stone has been
set rolling, feedback from the SATA subsystem maintainers did not take long. Minor
issues need to get resolved, otherwise the SATA subsystem maintainer, Jeff Garzik, will
pick the patches up so they can be queued for kernel 3.4.0 and integration testing can
be done in the linux-next tree. To fix the minor issues, a new iteration of patches was
required.

8.3. Strategy Adaption

Due to the fact that the first iteration of kernel patches missed the required deadline for
kernel version 3.3.0, a strategy adaption was necessary. The patches turned out to be too
intrusive to just get them committed to both relevant subsystems. That most likely was
the reason for the SATA maintainer pushing them to linux-next4 for integration testing.
If no problems arise until the next merge window opens (approx. beginning of march, cf.
5.1). Because of that, primary focus was shifted from touching the whole stack (Kernel,
GNOME, UDisks) to just getting the relevant kernel changes accepted. Although the
other goals are still pursued, the top priority lies within the kernel patches, because they
make up the base for any further work in this area. For reference, the work done on the
UDisks projects can be found in the appendix A.2.

8.4. Reacting on Feedback from the Community

After the first important milestone has been missed, focus lies on refreshing the patches
according to the feedback received. Of course, this includes repeating all the testing
work done before. Furthermore, the underlying code base has changed, from what was
available in the development tree during 3.1.0 and 3.2.0, to a version based on 3.2.0,
in addition to the changes which got pulled in during the passed merge window. So if
unlucky, all the patches need to be rebased according to the modified code base.

As a first change, the patch formerly known as patch 1 of 7 was replaced by a own
version:

3http://permalink.gmane.org/gmane.linux.acpi.devel/51756
4A separate development tree used for integration testing

26

http://permalink.gmane.org/gmane.linux.acpi.devel/51756

8.4. Reacting on Feedback from the Community

[PATCHv2 1/8] scsi: Add wrapper to access and set scsi_bus_type \

in struct acpi_bus_type

Additionally, it turned out during testing, that the patches did not work anymore
as expected. Because no obvious explanation was available, the only remaining reason
has to be the modified code base. So something else, not directly related to the patch
set must have been changed which affects the new feature. Debugging confirmed that
suspicion and an additional patch (cf. A.1.2) was the result:

[PATCHv2 8/8] libata: Use correct PCI devices

8.4.1. Resubmission 1

On 20th January, 2012, a new patch set5, containing 8 patches (cf. A.1.2), was sent to
the appropriate lists:

Patches 2 through 5 are just a refresh of the patches from Matthew

Garrett sent to this list in September 2010 [1]:

Patch 1 is a new patch incorporating the corrections from James

Bottomley. Patch 6, 7 and 8 make the whole patch set actually work on my

test hardware (Thinkpad x60/Thinkpad T60) by fixing minor issues and

compensating changes after the first submission.

All patches now contain the correct Signed-off-by instead of Acked-by

tags.

[PATCH 1/8] scsi: Add wrapper to access and set scsi_bus_type in struct acpi_bus_type

[PATCH 2/8] libata: Bind the Linux device tree to the ACPI device tree

[PATCH 3/8] libata: Migrate ACPI code over to new bindings

[PATCH 4/8] acpi: Add support for linking docks to the objects they contain

[PATCH 5/8] libata: Add links between removable devices and docks

[PATCH 6/8] libata: Generate and pass correct acpi handles

[PATCH 7/8] acpi: Prevent duplicate hotplug device registration on dock stations

[PATCH 8/8] libata: Use correct PCI devices

Regards,

Holger

[1] http://comments.gmane.org/gmane.linux.acpi.devel/47378

5http://thread.gmane.org/gmane.linux.acpi.devel/51785

27

http://thread.gmane.org/gmane.linux.acpi.devel/51785

8. Feature Submission Process

After more than two weeks, and after another interested community member asked for
the status of these patches, the SATA subsystem maintainer finally pushed the patches
to linux-next6 for integration testing on 9th February, 2012. This usually means, that if
no problem related to the patches comes up, they will be automatically considered for
inclusion during the upcoming merge window.

8.5. Reacting on Feedback Cont.

8.5.1. Fixing a Boot Problem

While working on the userland parts and waiting for the kernel changes to finally get
merged into Linus Torvalds tree, a community member complained on the main Linux
kernel development list7 about boot problems while testing the latest linux-next tree.
The title of the thread is “linux-next: dock link device is oopsy”, and seemed suspi-
ciously related to the changes performed in this project. Some debugging proved that
assumption. After some back and forth, testing, writing and rewriting a possible patch,
yet another patch(cf. A.1.3) on top of the already existing patch series was the outcome:

[PATCH] dock: fix bootup oops and other dock_link breakage

dock_link_device() and dock_unlink_device() should bail out early

to avoid oops on zero-length kmalloc() when dock_station_count is 0.

But isn’t there an off-by-one in that kmalloc() length anyway?

An extra NULL appended at the end suggests so.

Rework the ordering with gotos on failure to fix several issues.

And presumably dock_unlink_device() should be presenting the same

interface as dock_link_device(), with NULL returned when none found.

Signed-off-by: Hugh Dickins <hughd <at> google.com>

[diff output truncated]

8.5.2. Fixing a Compilation Error

While debugging the previously mentioned problem, a minor issue and rather cosmetic
problem came up. It required yet another patch (cf. A.1.3):

6http://article.gmane.org/gmane.linux.acpi.devel/51950
7http://comments.gmane.org/gmane.linux.kernel/1254952

28

http://article.gmane.org/gmane.linux.acpi.devel/51950
http://comments.gmane.org/gmane.linux.kernel/1254952

8.6. Drawing a Final Stroke

[PATCH] acpi: Fix compiler error when setting CONFIG_ACPI_DOCK=n

When compiling with CONFIG_ACPI_DOCK=n,

is_registered_hotplug_dock_device() needs to be defined

Signed-off-by: Holger Macht <holger <at> homac.de>

[diff output truncated]

8.6. Drawing a Final Stroke

Both additional patches mentioned in the previous section where picked up and accepted
on 21th February, 2012. Nothing related happened anymore until the end of February.
So those two patches can be considered the final actions performed within this research
project, which in turn can be marked as completed. Due to the nature of the Linux
development process, there is nothing which could be done anymore, until either new
problems arise or the feature gets released along with the upcoming official kernel release.
Sure, contributor responsibility would not stop at this point. After the submission
process, the time of maintenance begins. However, this is not subject of this thesis.
More interesting in this regard is the recapitulation of the outlined strategy, the actual
submission process, what could have been done better or not.

29

8. Feature Submission Process

30

9. Recapitulation

As a short executive summary, the case study did not work out as expected, and failed, all
in all. However, only in regard to the timeline predicted. The new feature was accepted in
the largest project involved. It just was delayed by unresponsiveness of the responsible
community members and by technical obstacles. Nothing unusual when dealing with
software design and implementation. All in all: The feature found acceptance in the
Linux kernel project. And if all goes well, it will be in the main code base after the next
merge window and will subsequently show up in kernel 3.4.0. If that happens, it will
become an inherent part of many GNU/Linux based operating systems. However, the
schedule outlined for this case study was undoubtedly missed.

9.1. Schedule Deviance

In terms of the previously aligned schedule, it requires an in-depth look. The initial
design and implementation worked out as expected. The required patches were ready by
beginning of December 2012. In fact, the first milestone, the initial kernel submission has
been beaten by a number of five days. However, this did not turn out as an advantage.
The goal was to have the patches submitted, reviewed, possibly fixed and accepted by
the respective subsystem maintainer the moment the new merge window opened. This
window did open, six days after what has been predicted. However, within a whole
month, the patches did not receive any further recognition, what unfortunately lead
to missing the merge window. This turned out to be the first and future omnipresent
violation of what has been predicted in the submission schedule. It is fatal for every
kind of schedule when the first important deadlines are missed. The earlier the deviation
from a schedule, the more problematic to cope with.

9.2. Impact of Missing the Deadlines

At this point in time, it was clear that the first and possible most intrusive part of
patches will miss the required 3.3.0 kernel release. This lead to a huge delay and caused
a blockage of the remaining user space modifications and thus, the remaining schedule.
The remaining days, the focus was set to getting the kernel changes officially accepted,
which in turn implied to defer the userland implementation. The reason for that is
primarily that you will most likely not get any code changes into a project, whose

31

9. Recapitulation

underlying interface support is not officially accepted nor widely used. Another reason
is that the moment the first kernel review came in, development resources were bound
to fixing the remaining issues instead of concentrating on other parts. As the kernel
modifications again needed some attention by the end of February, it was undoubtedly
too late to engage other projects.

9.3. Localizing the Problems

Although it is clear what went wrong from a timely manner, the root causes have not
been identified yet. They can be considered manifold and whether they can really be
made responsible often remains subject to speculation. The following sections are rather
a fishing for root causes instead of reciting proven facts. The causes could be categorized
into three different areas: Problems caused by personal matters, by the nature of open
source or by the individual project at hand.

9.3.1. Caused by Personal Matters

In the area of personal matters, one has to mention the fact that the author of the patches
has no big reputation in the area of kernel development. He occasionally submitted minor
bug fixes or enhancements, yet not to the extent this thesis deals with. In an ideal world,
this should not play a big role, however, in reality it does. So this might be one of the
reason why the patch set submission did not get an immediate review. Not knowing the
contributor or his skills can cause reluctance by the responsible kernel maintainers. One
speculative reason might be, that they cannot be sure about the code quality without
having a deeper look. This might lead to putting the request for review to the end of
their queue. A very small patch fixing a bug would eventually be accepted silently, not
so here.

9.3.2. Caused by the Nature of Open Source

The nature of open source software comes along with some characteristic preconditions.
Strictly speaking, nobody is obliged to review the code you submitted. Many people are
not paid for doing so, so they pick what they are interested in. If the problem at hand
is not of broader interest, nobody feels obliged to review the code. Sure, sooner or later
it will happen, as could seen in this case study.

9.3.3. Caused by the Individual Project

Although every subsystem within the Linux kernel has specific maintainer, this person
does not necessarily be responsible for the review of every bit of code. Every subsystem
has a number of good engineers, often working on exclusive topics. So if nobody really

32

9.4. Identified Best Practices

feels responsible, the code does not get reviewed. Maybe the qualified developer is
currently not available or has responsibilities with higher priority. Of course, this would
also apply to other large open source projects, but fits particularly well for the Linux
kernel development model and structure.

Furthermore, the Linux kernel does not have fixed road map linked with a correlative
feature database. Other projects might have the rule to only release when all documented
and necessary features are properly implemented and stable. However, not so with the
Linux kernel. Everything not accepted and committed by a qualified kernel maintainer
by the time the merge window closes will not be shipped. David G. Glance summarized
this quite accurate:

“What functionality goes into a particular version is therefore determined
simply by what is accepted during a particular time window.”[7]

After trying to identify some of the problems which might have caused the failure of
the initial approach, it is time to look at what could have been done better.

9.4. Identified Best Practices

Although the chronology of the concrete submission process cannot be considered smooth,
it also can not be called extraordinary. Having an initial patch set submission followed
by two resubmissions is kind of standard procedure. Although the case studies result can
be considered failed, it is not because the feature was not accepted, but rather because
of a wrong schedule with exaggerated expectations.

So the first advice which can be given is one which applies to every software project,
no matter which development cycle it pursues: Arrange enough time, more than you
expect. More lead time, especially for submitting kernel changes, is one of the crucial
preconditions for a possible success. Do not target the next kernel release, instead target
the next but one.

Furthermore, more than a month passed before the patches received any public re-
view. During those five weeks, the project lied dormant. Andi Kleens advice from “On
submitting kernel patches”[8] could have been considered more carefully:

“Sometimes a submission gets stuck during the submission process. In
this case, it is a good idea to just send private mail to the maintainer who is
responsible and ask advice on how to proceed with the merge.”[8]

This could have been done, however, with some constrains. A lot of the local kernel
documentation proposes to be patient, so does the previously mentioned file Submitting-
Patches. If the change request and its acceptance is of immediate urgency, sending a
private mail to one of the subsystem maintainers is one possibility for trying to apply
some pressure. However, this could backfire, too. The kernel documentation explicitly

33

9. Recapitulation

lists some reasons why a patch might not be considered for inclusion. One of them
is: “You are being annoying.”[4]. So the general rule applies: Be patient, usually you
cannot do anything about it.

34

10. Conclusion

Although this thesis turned out to be specialized on the Linux kernel, a lot can be applied
for other open source projects. Most of them might not have the same development
model, but similarities exist in all of them. Especially when it comes to code quality,
the submission channel or mailing list communication. The Linux kernel development
process is just an excellent model of how a large successful open source project can work.
So in general, many aspects examined can be transferred to similar open source projects.

When it comes to the outcome of this thesis, one could argue that the project failed
and thus companies or new contributors should hold off from investing into open source
software development and its corresponding projects. However, that would be too easy.
Strictly speaking, only the outlined schedule failed and this was caused by multiple
reasons. If all would have went well, with early feedback and acceptance, the schedule
could have been fulfilled. The reason this did not come true was simply the fact that
the success of the schedule depended on external parameters. Those were the projects
which have been dealt with, especially the Linux kernel.

It has, as most open source projects out there, its own rules and processes companies
cannot rely on being able to influence in whatever way they like. A major decision, like
the inclusion of new code, cannot be enforced. Expecting something like the feature
inclusion to work within such a strict time frame is possible, although unpredictable
to a certain extend. You have to rely on external project members. At first glance, a
company has no means to make this process faster. The only way is to invest, to build up
a own contributor base, thus strengthening the own influence by providing development
resources. And this can be a tedious process.

This process can be considered worthwhile, though. Although this thesis concentrated
on the actual submission process, a contribution to an open source project does not end
with the acceptance of the requested changes. After code has been committed to a
project’s repository, maintenance starts. This is no different with the Linux kernel.
Ideally, the contributor takes care of all problems which may arise once his source code
has been released with an official kernel. However, if a feature is an inherent part of a
big project, the appropriate community might take care of its maintenance. Even if it
takes longer to get a feature accepted, as soon as in the kernel, it will be co-maintained
by the community and not entirely by the original authors. In the past, companies tried
to maintain specific extensions entirely on their own, and quite often miserably failed.
Getting the desired changes into the mainline kernel usually means that all the different
Linux distributions will pick it up and ship it, automatically. This will in turn extend
the user base and can lead to growing development resources. Interested community

35

10. Conclusion

members start using the code, have new ideas, find bugs and might finally start to
stabilize and improve the corresponding source code by themselves. It would not be the
first time a proper feature or idea develops a life of its own nobody would have ever
thought of before.

36

A. Appendix

A.1. Patch Mails for the Linux Kernel

A.1.1. First Iteration of Patches (2011-12-06)

[PATCH 1/7] scsi: Export scsi bus type

Subject : [PATCH 1/7] s c s i : Export s c s i b u s t yp e

From : Matthew Garrett <mjg@redhat . com>

We need s c s i b u s t yp e in order to be ab le to bind ata dev i c e s aga in s t
acp i d ev i c e s . Export i t from the s c s i core .

Signed−o f f−by : Matthew Garrett <mjg@redhat . com>
Acked−by : Holger Macht <holger@homac . de>
−−−
d r i v e r s / s c s i / s c s i p r i v . h | 1 −
i n c l ude / s c s i / s c s i . h | 2 ++
2 f i l e s changed , 2 i n s e r t i o n s (+) , 1 d e l e t i o n (−)

Index : l i nux / d r i v e r s / s c s i / s c s i p r i v . h
===
−−− l i nux . o r i g / d r i v e r s / s c s i / s c s i p r i v . h
+++ l inux / d r i v e r s / s c s i / s c s i p r i v . h
@@ −134 ,7 +134 ,6 @@ extern i n t s c s i s y s f s t a r g e t i n i t i a l i z e (
extern s t r u c t s c s i t r a n s p o r t t emp l a t e b l ank t ranspo r t t emp la t e ;
extern void s c s i r emov e d e v i c e (s t r u c t s c s i d e v i c e ∗) ;

−extern s t r u c t bus type s c s i b u s t yp e ;
extern const s t r u c t a t t r i bu t e g r oup ∗ s c s i s y s f s s h o s t a t t r g r o u p s [] ;

/∗ s c s i n e t l i n k . c ∗/
Index : l i nux / inc lude / s c s i / s c s i . h
===
−−− l i nux . o r i g / inc lude / s c s i / s c s i . h
+++ l inux / inc lude / s c s i / s c s i . h
@@ −187 ,6 +187 ,8 @@ s t r u c t scs i cmnd ;

#de f i n e SCSI MAX VARLEN CDB SIZE 260

+extern s t r u c t bus type s c s i b u s t yp e ;
+
/∗ de f ined in T10 SCSI Primary Commands−2 (SPC2) ∗/
s t r u c t s c s i v a r l e n c db hd r {

u8 opcode ; /∗ opcode always == VARIABLE LENGTH CMD ∗/

[PATCH 2/7] libata: Bind the Linux device tree to the ACPI device tree

Subject : [PATCH 2/7] l i b a t a : Bind the Linux dev i c e t r e e to the ACPI dev i ce t r e e

From : Matthew Garrett <mjg@redhat . com>

37

A. Appendix

We want to be ab le to expre s s the dependenc ies between ACPI dock dev i c e s
and t h e i r ch i l d r en . This r e qu i r e s us to be ab le to a s s o c i a t e the ACPI
dev i ce t r e e and l i b a t a dev i c e s . This patch uses the g ene r i c ACPI g lue
framework to do so .

Signed−o f f−by : Matthew Garrett <mjg@redhat . com>
Acked−by : Holger Macht <holger@homac . de>
−−−
acp i / g lue . c | 2
ata / l i ba ta−acp i . c | 118 ++
ata / l i ba ta−core . c | 3 +
ata / l i b a t a . h | 4 +
4 f i l e s changed , 127 i n s e r t i o n s (+)

Index : l i nux / d r i v e r s / ata / l i ba ta−acp i . c
===
−−− l i nux . o r i g / d r i v e r s / ata / l i ba ta−acp i . c
+++ l inux / d r i v e r s / ata / l i ba ta−acp i . c
@@ −47,6 +47 ,31 @@ s t a t i c void a t a a c p i c l e a r g t f (s t r u c t at

dev−>g t f c a ch e = NULL;
}

+s t a t i c acp i hand l e ap acp i hand l e (s t r u c t a ta po r t ∗ap)
+{
+ i f (ap−>f l a g s & ATA FLAG ACPI SATA)
+ return NULL;
+ return DEVICE ACPI HANDLE(&ap−>s c s i h o s t−>shost gendev) ;
+}
+
+s t a t i c acp i hand l e dev acp i hand l e (s t r u c t a t a dev i c e ∗dev)
+{
+ acp i i n t e g e r adr ;
+ s t r u c t a ta po r t ∗ap = dev−>l i nk−>ap ;
+
+ i f (dev−>sdev)
+ return DEVICE ACPI HANDLE(&dev−>sdev−>sdev gendev) ;
+
+ i f (ap−>f l a g s & ATA FLAG ACPI SATA) {
+ i f (! sata pmp attached (ap))
+ adr = SATA ADR(ap−>port no , NO PORTMULT) ;
+ e l s e
+ adr = SATA ADR(ap−>port no , dev−>l i nk−>pmp) ;
+ return a c p i g e t c h i l d (DEVICE ACPI HANDLE(ap−>host−>dev) , adr) ;
+ } e l s e
+ return a c p i g e t c h i l d (ap acp i hand l e (ap) , dev−>devno) ;
+}
+
/∗∗
∗ a t a a c p i a s s o c i a t e s a t a p o r t − a s s o c i a t e SATA port with ACPI ob j e c t s
∗ @ap : t a r g e t SATA port

@@ −1018 ,3 +1043 ,96 @@ void a t a a c p i o n d i s a b l e (s t r u c t a ta dev i
{

a t a a c p i c l e a r g t f (dev) ;
}

+
+s t a t i c i n t i s p c i a t a (s t r u c t dev i c e ∗dev)
+{
+ s t ru c t pc i dev ∗pdev ;
+
+ i f (! i s p c i d e v (dev))
+ return 0 ;
+
+ pdev = to pc i d ev (dev) ;
+
+ i f ((pdev−>c l a s s >> 8) != PCI CLASS STORAGE SATA &&
+ (pdev−>c l a s s >> 8) != PCI CLASS STORAGE IDE)
+ return 0 ;

38

A.1. Patch Mails for the Linux Kernel

+
+ return 1 ;
+}
+
+s t a t i c i n t a t a a cp i b i nd ho s t (s t r u c t dev i ce ∗dev , i n t host , a cp i hand l e ∗handle)
+{
+ s t ru c t Sc s i Hos t ∗ shos t = dev to sho s t (dev) ;
+ s t r u c t a ta po r t ∗ap = a t a s h o s t t o p o r t (shos t) ;
+
+ i f (ap−>f l a g s & ATA FLAG ACPI SATA)
+ return −ENODEV;
+
+ ∗handle = a c p i g e t c h i l d (DEVICE ACPI HANDLE(dev−>parent) , ap−>port no) ;
+
+ i f (! ∗ handle)
+ return −ENODEV;
+
+ return 0 ;
+}
+
+s t a t i c i n t a t a a cp i b i nd d ev i c e (s t r u c t dev i ce ∗dev , i n t channel , i n t id ,
+ acp i hand l e ∗handle)
+{
+ s t ru c t dev i ce ∗host = dev−>parent−>parent ;
+ s t r u c t Sc s i Hos t ∗ shos t = dev to sho s t (host) ;
+ s t r u c t a ta po r t ∗ap = a t a s h o s t t o p o r t (shos t) ;
+ s t r u c t a t a dev i c e ∗ ata dev ;
+
+ i f (ap−>f l a g s & ATA FLAG ACPI SATA)
+ ata dev = &ap−>l i n k . dev i c e [channel] ;
+ e l s e
+ ata dev = &ap−>l i n k . dev i c e [id] ;
+
+ ∗handle = dev acp i hand l e (ata dev) ;
+
+ i f (! ∗ handle)
+ return −ENODEV;
+
+ return 0 ;
+}
+
+s t a t i c i n t a t a a c p i f i n d d e v i c e (s t r u c t dev i ce ∗dev , acp i hand l e ∗handle)
+{
+ unsigned i n t host , channel , id , lun ;
+
+ i f (s s c an f (dev name (dev) , ” host%u” , &host) == 1) {
+ i f (! i s p c i a t a (dev−>parent))
+ return −ENODEV;
+
+ return a t a a cp i b i nd ho s t (dev , host , handle) ;
+ } e l s e i f (s s c an f (dev name (dev) , ”%d:%d:%d:%d” ,
+ &host , &channel , &id , &lun) == 4) {
+ i f (! i s p c i a t a (dev−>parent−>parent−>parent))
+ return −ENODEV;
+
+ return a t a a cp i b i nd d ev i c e (dev , channel , id , handle) ;
+ } e l s e
+ return −ENODEV;
+}
+
+s t a t i c i n t ata acpi f ind dummy (s t r u c t dev i c e ∗dev , acp i hand l e ∗handle)
+{
+ return −ENODEV;
+}
+
+s t a t i c s t r u c t acp i bus type a ta acp i bu s = {
+ . bus = &sc s i bu s t ype ,
+ . f i n d b r i d g e = ata acpi f ind dummy ,

39

A. Appendix

+ . f i n d d e v i c e = a t a a cp i f i n d d e v i c e ,
+} ;
+
+in t a t a a c p i r e g i s t e r (void)
+{
+ return r e g i s t e r a c p i b u s t y p e (&ata acp i bu s) ;
+}
+
+void a t a a c p i u n r e g i s t e r (void)
+{
+ un r e g i s t e r a c p i bu s t yp e (&ata acp i bu s) ;
+}
Index : l i nux / d r i v e r s / ata / l i ba ta−core . c
===
−−− l i nux . o r i g / d r i v e r s / ata / l i ba ta−core . c
+++ l inux / d r i v e r s / ata / l i ba ta−core . c
@@ −6442 ,6 +6442 ,8 @@ s t a t i c i n t i n i t a t a i n i t (void)

a ta pa r s e f o r c e pa ram () ;

+ a t a a c p i r e g i s t e r () ;
+

rc = a t a s f f i n i t () ;
i f (r c) {

k f r e e (a t a f o r c e t b l) ;
@@ −6468 ,6 +6470 ,7 @@ s t a t i c void e x i t a t a e x i t (void)

a t a r e l e a s e t r a n s p o r t (a t a s c s i t r a n s p o r t t emp l a t e) ;
l i b a t a t r a n s p o r t e x i t () ;
a t a s f f e x i t () ;

+ a t a a c p i u n r e g i s t e r () ;
k f r e e (a t a f o r c e t b l) ;

}

Index : l i nux / d r i v e r s / ata / l i b a t a . h
===
−−− l i nux . o r i g / d r i v e r s / ata / l i b a t a . h
+++ l inux / d r i v e r s / ata / l i b a t a . h
@@ −117 ,6 +117 ,8 @@ extern void ata acp i on re sume (s t r u c t at
extern i n t a t a a cp i on dev c f g (s t r u c t a t a dev i c e ∗dev) ;
extern void a t a a c p i o n d i s a b l e (s t r u c t a t a dev i c e ∗dev) ;
extern void a t a a c p i s e t s t a t e (s t r u c t a ta po r t ∗ap , pm message t s t a t e) ;

+extern i n t a t a a c p i r e g i s t e r (void) ;
+extern void a t a a c p i u n r e g i s t e r (void) ;
#e l s e
s t a t i c i n l i n e void a t a a c p i a s s o c i a t e s a t a p o r t (s t r u c t a ta po r t ∗ap) { }
s t a t i c i n l i n e void a t a a c p i a s s o c i a t e (s t r u c t a ta hos t ∗host) { }

@@ −127 ,6 +129 ,8 @@ s t a t i c i n l i n e i n t a t a a cp i on dev c f g (s t r
s t a t i c i n l i n e void a t a a c p i o n d i s a b l e (s t r u c t a t a dev i c e ∗dev) { }
s t a t i c i n l i n e void a t a a c p i s e t s t a t e (s t r u c t a ta po r t ∗ap ,

pm message t s t a t e) { }
+s t a t i c i n l i n e i n t a t a a c p i r e g i s t e r (void) { r e turn 0 ; }
+s t a t i c void a t a a c p i u n r e g i s t e r (void) { }
#end i f

/∗ l i ba ta−s c s i . c ∗/
Index : l i nux / d r i v e r s / acp i / g lue . c
===
−−− l i nux . o r i g / d r i v e r s / acp i / g lue . c
+++ l inux / d r i v e r s / acp i / g lue . c
@@ −39,6 +39 ,7 @@ in t r e g i s t e r a c p i b u s t y p e (s t r u c t acp i b

}
r e turn −ENODEV;

}
+EXPORTSYMBOL(r e g i s t e r a c p i b u s t y p e) ;

i n t un r e g i s t e r a c p i bu s t yp e (s t r u c t acp i bus type ∗ type)
{

@@ −54,6 +55 ,7 @@ in t un r e g i s t e r a c p i bu s t yp e (s t r u c t acp i

40

A.1. Patch Mails for the Linux Kernel

}
r e turn −ENODEV;

}
+EXPORTSYMBOL(un r e g i s t e r a c p i bu s t yp e) ;

s t a t i c s t r u c t acp i bus type ∗ a cp i g e t bu s t ype (s t r u c t bus type ∗ type)
{

[PATCH 3/7] libata: Migrate ACPI code over to new bindings

Subject : [PATCH 3/7] l i b a t a : Migrate ACPI code over to new bind ings

From : Matthew Garrett <mjg@redhat . com>

Now that we have the a b i l i t y to d i r e c t l y g lue the ACPI namespace to the
d r i v e r model in l i ba ta , we don ’ t need the custom code to handle the same
th ing . Remove i t and migrate the f unc t i on s over to the new code .

Signed−o f f−by : Matthew Garrett <mjg@redhat . com>
Acked−by : Holger Macht <holger@homac . de>
−−−
d r i v e r s / ata / l i ba ta−acp i . c | 166 +++++++++++−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
d r i v e r s / ata / l i ba ta−core . c | 3
d r i v e r s / ata / l i ba ta−pmp. c | 4 −
d r i v e r s / ata / l i b a t a . h | 5 −
d r i v e r s / ata / pata acp i . c | 4 −
i n c l ude / l i nux / l i b a t a . h | 7 −
6 f i l e s changed , 45 i n s e r t i o n s (+) , 144 d e l e t i o n s (−)

Index : l i nux / d r i v e r s / ata / l i ba ta−acp i . c
===
−−− l i nux . o r i g / d r i v e r s / ata / l i ba ta−acp i . c
+++ l inux / d r i v e r s / ata / l i ba ta−acp i . c
@@ −47 ,14 +47 ,29 @@ s t a t i c void a t a a c p i c l e a r g t f (s t r u c t at

dev−>g t f c a ch e = NULL;
}

−s t a t i c acp i hand l e ap acp i hand l e (s t r u c t a ta po r t ∗ap)
+/∗∗
+ ∗ a ta ap acp i hand l e − prov ide the acp i hand l e f o r an a ta po r t
+ ∗ @ap : the acp i hand l e returned w i l l correspond to t h i s port
+ ∗
+ ∗ Returns the acp i hand l e f o r the ACPI namespace ob j e c t cor re spond ing to
+ ∗ the a ta po r t passed in to the funct ion , or NULL i f no such ob j e c t e x i s t s
+ ∗/
+acp i hand l e a ta ap acp i hand l e (s t r u c t a ta po r t ∗ap)
{

i f (ap−>f l a g s & ATA FLAG ACPI SATA)
return NULL;

re turn DEVICE ACPI HANDLE(&ap−>s c s i h o s t−>shost gendev) ;
}

+EXPORTSYMBOL(a ta ap acp i hand l e) ;

−s t a t i c acp i hand l e dev acp i hand l e (s t r u c t a t a dev i c e ∗dev)
+/∗∗
+ ∗ a ta dev acp i hand l e − prov ide the acp i hand l e f o r an a ta dev i c e
+ ∗ @dev : the a cp i d ev i c e returned w i l l correspond to t h i s port
+ ∗
+ ∗ Returns the acp i hand l e f o r the ACPI namespace ob j e c t cor re spond ing to
+ ∗ the a t a dev i c e passed in to the funct ion , or NULL i f no such ob j e c t e x i s t s
+ ∗/
+acp i hand l e a ta dev acp i hand l e (s t r u c t a t a dev i c e ∗dev)
{

a c p i i n t e g e r adr ;

41

A. Appendix

s t r u c t a ta po r t ∗ap = dev−>l i nk−>ap ;
@@ −69 ,66 +84 ,9 @@ s t a t i c acp i hand l e dev acp i hand l e (s t ruc

adr = SATA ADR(ap−>port no , dev−>l i nk−>pmp) ;
re turn a c p i g e t c h i l d (DEVICE ACPI HANDLE(ap−>host−>dev) , adr) ;

} e l s e
− r e turn a c p i g e t c h i l d (ap acp i hand l e (ap) , dev−>devno) ;
−}
−
−/∗∗
− ∗ a t a a c p i a s s o c i a t e s a t a p o r t − a s s o c i a t e SATA port with ACPI ob j e c t s
− ∗ @ap : t a r g e t SATA port
− ∗
− ∗ Look up ACPI ob j e c t s a s s o c i a t ed with @ap and i n i t i a l i z e acp i hand l e
− ∗ f i e l d s o f @ap , the port and dev i c e s a c co rd ing ly .
− ∗
− ∗ LOCKING:
− ∗ EH context .
− ∗
− ∗ RETURNS:
− ∗ 0 on succes s , −errno on f a i l u r e .
− ∗/
−void a t a a c p i a s s o c i a t e s a t a p o r t (s t r u c t a ta po r t ∗ap)
−{
− WARNON(! (ap−>f l a g s & ATA FLAG ACPI SATA)) ;
−
− i f (! sata pmp attached (ap)) {
− u64 adr = SATA ADR(ap−>port no , NO PORTMULT) ;
−
− ap−>l i n k . device−>acp i hand l e =
− a c p i g e t c h i l d (ap−>host−>acp i handle , adr) ;
− } e l s e {
− s t r u c t a t a l i n k ∗ l i n k ;
−
− ap−>l i n k . device−>acp i hand l e = NULL;
−
− a t a f o r e a c h l i n k (l ink , ap , EDGE) {
− u64 adr = SATA ADR(ap−>port no , l ink−>pmp) ;
−
− l i nk−>device−>acp i hand l e =
− a c p i g e t c h i l d (ap−>host−>acp i handle , adr) ;
− }
− }
−}
−
−s t a t i c void a t a a c p i a s s o c i a t e i d e p o r t (s t r u c t a ta po r t ∗ap)
−{
− i n t max devices , i ;
−
− ap−>acp i hand l e = a c p i g e t c h i l d (ap−>host−>acp i handle , ap−>port no) ;
− i f (! ap−>acp i hand l e)
− r e turn ;
−
− max devices = 1 ;
− i f (ap−>f l a g s & ATA FLAG SLAVE POSS)
− max devices++;
−
− f o r (i = 0 ; i < max devices ; i++) {
− s t r u c t a t a dev i c e ∗dev = &ap−>l i n k . dev i c e [i] ;
−
− dev−>acp i hand l e = a c p i g e t c h i l d (ap−>acp i handle , i) ;
− }
−
− i f (a ta acp i gtm (ap , &ap−> a c p i i n i t g tm) == 0)
− ap−>p f l a g s |= ATA PFLAG INIT GTM VALID;
+ return a c p i g e t c h i l d (a ta ap acp i hand l e (ap) , dev−>devno) ;
}

+EXPORTSYMBOL(a ta dev acp i hand l e) ;

42

A.1. Patch Mails for the Linux Kernel

/∗ @ap and @dev are the same as a ta acp i hand l e ho tp lug () ∗/
s t a t i c void a t a a cp i d e t a ch d ev i c e (s t r u c t a ta po r t ∗ap , s t r u c t a t a dev i c e ∗dev)

@@ −254 ,56 +212 ,6 @@ s t a t i c const s t r u c t acp i dock ops ata ac
} ;

/∗∗
− ∗ a t a a c p i a s s o c i a t e − a s s o c i a t e ATA host with ACPI ob j e c t s
− ∗ @host : t a r g e t ATA host
− ∗
− ∗ Look up ACPI ob j e c t s a s s o c i a t ed with @host and i n i t i a l i z e
− ∗ acp i hand l e f i e l d s o f @host , i t s por t s and dev i c e s a c co rd ing ly .
− ∗
− ∗ LOCKING:
− ∗ EH context .
− ∗
− ∗ RETURNS:
− ∗ 0 on succes s , −errno on f a i l u r e .
− ∗/
−void a t a a c p i a s s o c i a t e (s t r u c t a ta hos t ∗host)
−{
− i n t i , j ;
−
− i f (! i s p c i d e v (host−>dev) | | l i b a t a noa cp i)
− r e turn ;
−
− host−>acp i hand l e = DEVICE ACPI HANDLE(host−>dev) ;
− i f (! host−>acp i hand l e)
− r e turn ;
−
− f o r (i = 0 ; i < host−>n por t s ; i++) {
− s t r u c t a ta po r t ∗ap = host−>por t s [i] ;
−
− i f (host−>por t s [0]−> f l a g s & ATA FLAG ACPI SATA)
− a t a a c p i a s s o c i a t e s a t a p o r t (ap) ;
− e l s e
− a t a a c p i a s s o c i a t e i d e p o r t (ap) ;
−
− i f (ap−>acp i hand l e) {
− /∗ we might be on a docking s t a t i o n ∗/
− r e g i s t e r h o t p l u g do c k d e v i c e (ap−>acp i handle ,
− &ata acp i ap dock ops , ap) ;
− }
−
− f o r (j = 0 ; j < a ta l i nk max dev i c e s (&ap−>l i n k) ; j++) {
− s t r u c t a t a dev i c e ∗dev = &ap−>l i n k . dev i c e [j] ;
−
− i f (dev−>acp i hand l e) {
− /∗ we might be on a docking s t a t i o n ∗/
− r e g i s t e r h o t p l u g do c k d e v i c e (dev−>acp i handle ,
− &ata acp i dev dock ops , dev) ;
− }
− }
− }
−}
−
−/∗∗
∗ a t a a c p i d i s s o c i a t e − d i s s o c i a t e ATA host from ACPI ob j e c t s
∗ @host : t a r g e t ATA host
∗

@@ −324 ,7 +232 ,7 @@ void a t a a c p i d i s s o c i a t e (s t r u c t a ta hos t
s t r u c t a ta po r t ∗ap = host−>por t s [i] ;
const s t r u c t ata acp i gtm ∗gtm = a t a a cp i i n i t g tm (ap) ;

− i f (ap−>acp i hand l e && gtm)
+ i f (a ta ap acp i hand l e (ap) && gtm)

ata acp i s tm (ap , gtm) ;
}

}

43

A. Appendix

@@ −349 ,7 +257 ,8 @@ in t ata acp i gtm (s t r u c t a ta po r t ∗ap , s t
a c p i s t a t u s s t a tu s ;
i n t rc = 0 ;

− s t a tu s = a cp i e v a l u a t e ob j e c t (ap−>acp i handle , ” GTM” , NULL, &output) ;
+ s ta tu s = a cp i e v a l u a t e ob j e c t (a ta ap acp i hand l e (ap) , ” GTM” , NULL,
+ &output) ;

r c = −ENOENT;
i f (s t a tu s == AE NOT FOUND)

@@ −419 ,7 +328 ,8 @@ in t ata acp i s tm (s t r u c t a ta po r t ∗ap , co
input . count = 3 ;
input . po in t e r = in params ;

− s t a tu s = a cp i e v a l u a t e ob j e c t (ap−>acp i handle , ” STM” , &input , NULL) ;
+ s ta tu s = a cp i e v a l u a t e ob j e c t (a ta ap acp i hand l e (ap) , ” STM” , &input ,
+ NULL) ;

i f (s t a tu s == AE NOT FOUND)
return −ENOENT;

@@ −476 ,7 +386 ,8 @@ s t a t i c i n t ata dev get GTF (s t r u c t ata de
f un c , ap−>port no) ;

/∗ GTF has no input parameters ∗/
− s t a tu s = a cp i e v a l u a t e ob j e c t (dev−>acp i handle , ” GTF” , NULL, &output) ;
+ s ta tu s = a cp i e v a l u a t e ob j e c t (a ta dev acp i hand l e (dev) , ” GTF” , NULL,
+ &output) ;

out ob j = dev−>g t f c a ch e = output . po in t e r ;

i f (ACPI FAILURE(s t a tu s)) {
@@ −842 ,7 +753 ,8 @@ s t a t i c i n t a t a a cp i pu sh i d (s t r u c t ata d

/∗ I t ’ s OK f o r SDD to be miss ing too . ∗/
swap buf l e16 (dev−>id , ATA ID WORDS) ;

− s t a tu s = a cp i e v a l u a t e ob j e c t (dev−>acp i handle , ” SDD” , &input , NULL) ;
+ s ta tu s = a cp i e v a l u a t e ob j e c t (a ta dev acp i hand l e (dev) , ” SDD” , &input ,
+ NULL) ;

swap buf l e16 (dev−>id , ATA ID WORDS) ;

i f (s t a tu s == AE NOT FOUND)
@@ −892 ,7 +804 ,7 @@ void ata acp i on re sume (s t r u c t a ta po r t

const s t r u c t ata acp i gtm ∗gtm = a t a a cp i i n i t g tm (ap) ;
s t r u c t a t a dev i c e ∗dev ;

− i f (ap−>acp i hand l e && gtm) {
+ i f (a ta ap acp i hand l e (ap) && gtm) {

/∗ GTM va l i d ∗/

/∗ r e s t o r e t iming parameters ∗/
@@ −933 ,22 +845 ,22 @@ void a t a a c p i s e t s t a t e (s t r u c t a ta po r t
{

s t r u c t a t a dev i c e ∗dev ;

− i f (! ap−>acp i hand l e | | (ap−>f l a g s & ATA FLAG ACPI SATA))
+ i f (! a t a ap acp i hand l e (ap) | | (ap−>f l a g s & ATA FLAG ACPI SATA))

re turn ;

/∗ channel f i r s t and then d r i v e s f o r power on and v i ca ver sa
f o r power o f f ∗/

i f (s t a t e . event == PM EVENTON)
− acp i bus s e t power (ap−>acp i handle , ACPI STATE D0) ;
+ acp i bus s e t power (a ta ap acp i hand l e (ap) , ACPI STATE D0) ;

a t a f o r e a ch dev (dev , &ap−>l i nk , ENABLED) {
− i f (dev−>acp i hand l e)
− acp i bus s e t power (dev−>acp i handle ,
+ i f (a t a dev acp i hand l e (dev))
+ acp i bus s e t power (a ta dev acp i hand l e (dev) ,

44

A.1. Patch Mails for the Linux Kernel

s t a t e . event == PM EVENTON ?
ACPI STATE D0 : ACPI STATE D3) ;

}
i f (s t a t e . event != PM EVENTON)

− acp i bus s e t power (ap−>acp i handle , ACPI STATE D3) ;
+ acp i bus s e t power (a ta ap acp i hand l e (ap) , ACPI STATE D3) ;
}

/∗∗
@@ −973 ,7 +885 ,7 @@ in t a t a a cp i on dev c f g (s t r u c t a t a dev i c e

i n t nr executed = 0 ;
i n t rc ;

− i f (! dev−>acp i hand l e)
+ i f (! a t a dev acp i hand l e (dev))

re turn 0 ;

/∗ do we need to do GTF? ∗/
@@ −1019 ,7 +931 ,6 @@ in t a t a a cp i on dev c f g (s t r u c t a t a dev i c e

}

ata dev warn (dev , ”ACPI : f a i l e d the second time , d i s ab l ed \n ”) ;
− dev−>acp i hand l e = NULL;

/∗ We can s a f e l y cont inue i f no GTF command has been executed
∗ and port i s not f r o z en .

@@ −1073 ,6 +984 ,9 @@ s t a t i c i n t a t a a cp i b i nd ho s t (s t r u c t dev
i f (! ∗ handle)

re turn −ENODEV;

+ r e g i s t e r h o t p l u g do c k d e v i c e (a ta ap acp i hand l e (ap) ,
+ &ata acp i ap dock ops , ap) ;
+

return 0 ;
}

@@ −1089 ,10 +1003 ,12 @@ s t a t i c i n t a t a a cp i b i nd d ev i c e (s t r u c t d
e l s e

ata dev = &ap−>l i n k . dev i c e [id] ;

− ∗handle = dev acp i hand l e (ata dev) ;
+ ∗handle = ata dev acp i hand l e (ata dev) ;

i f (! ∗ handle)
re turn −ENODEV;

+ r e g i s t e r h o t p l u g do c k d e v i c e (a ta dev acp i hand l e (ata dev) ,
+ &ata acp i dev dock ops , ata dev) ;

r e turn 0 ;
}

Index : l i nux / d r i v e r s / ata / l i ba ta−core . c
===
−−− l i nux . o r i g / d r i v e r s / ata / l i ba ta−core . c
+++ l inux / d r i v e r s / ata / l i ba ta−core . c
@@ −5980 ,9 +5980 ,6 @@ in t a t a h o s t r e g i s t e r (s t r u c t a ta hos t ∗h

i f (rc)
goto e r r t add ;

− /∗ a s s o c i a t e with ACPI nodes ∗/
− a t a a c p i a s s o c i a t e (host) ;
−

/∗ s e t cable , s a t a s pd l im i t and repor t ∗/
f o r (i = 0 ; i < host−>n por t s ; i++) {

s t r u c t a ta po r t ∗ap = host−>por t s [i] ;
Index : l i nux / d r i v e r s / ata / l i ba ta−pmp. c
===
−−− l i nux . o r i g / d r i v e r s / ata / l i ba ta−pmp. c
+++ l inux / d r i v e r s / ata / l i ba ta−pmp. c

45

A. Appendix

@@ −529 ,8 +529 ,6 @@ in t sata pmp attach (s t r u c t a t a dev i c e ∗d
a t a f o r e a c h l i n k (t l i nk , ap , EDGE)

s a t a l i n k i n i t s p d (t l i n k) ;

− a t a a c p i a s s o c i a t e s a t a p o r t (ap) ;
−

r e turn 0 ;

f a i l :
@@ −570 ,8 +568 ,6 @@ s t a t i c void sata pmp detach (s t r u c t ata d

ap−>nr pmp l inks = 0 ;
l ink−>pmp = 0 ;
s p i n un l o c k i r q r e s t o r e (ap−>lock , f l a g s) ;

−
− a t a a c p i a s s o c i a t e s a t a p o r t (ap) ;
}

/∗∗
Index : l i nux / d r i v e r s / ata / l i b a t a . h
===
−−− l i nux . o r i g / d r i v e r s / ata / l i b a t a . h
+++ l inux / d r i v e r s / ata / l i b a t a . h
@@ −108 ,9 +108 ,6 @@ extern i n t a ta po r t p robe (s t r u c t ata por
/∗ l i ba ta−acp i . c ∗/
#i f d e f CONFIG ATA ACPI
extern unsigned i n t a t a a c p i g t f f i l t e r ;
−
−extern void a t a a c p i a s s o c i a t e s a t a p o r t (s t r u c t a ta po r t ∗ap) ;
−extern void a t a a c p i a s s o c i a t e (s t r u c t a ta hos t ∗host) ;
extern void a t a a c p i d i s s o c i a t e (s t r u c t a ta hos t ∗host) ;
extern i n t a ta acp i on suspend (s t r u c t a ta po r t ∗ap) ;
extern void ata acp i on re sume (s t r u c t a ta po r t ∗ap) ;

@@ −120 ,8 +117 ,6 @@ extern void a t a a c p i s e t s t a t e (s t r u c t at
extern i n t a t a a c p i r e g i s t e r (void) ;
extern void a t a a c p i u n r e g i s t e r (void) ;
#e l s e
−s t a t i c i n l i n e void a t a a c p i a s s o c i a t e s a t a p o r t (s t r u c t a ta po r t ∗ap) { }
−s t a t i c i n l i n e void a t a a c p i a s s o c i a t e (s t r u c t a ta hos t ∗host) { }
s t a t i c i n l i n e void a t a a c p i d i s s o c i a t e (s t r u c t a ta hos t ∗host) { }
s t a t i c i n l i n e i n t a ta acp i on suspend (s t r u c t a ta po r t ∗ap) { r e turn 0 ; }
s t a t i c i n l i n e void ata acp i on re sume (s t r u c t a ta po r t ∗ap) { }

Index : l i nux / d r i v e r s / ata / pata acp i . c
===
−−− l i nux . o r i g / d r i v e r s / ata / pata acp i . c
+++ l inux / d r i v e r s / ata / pata acp i . c
@@ −39,7 +39 ,7 @@ s t a t i c i n t p a c p i p r e r e s e t (s t r u c t a t a l i
{

s t r u c t a ta po r t ∗ap = l ink−>ap ;
s t r u c t pata acp i ∗ acp i = ap−>pr i va t e da ta ;

− i f (ap−>acp i hand l e == NULL | | ata acp i gtm (ap , &acpi−>gtm) < 0)
+ i f (a t a ap acp i hand l e (ap) == NULL | | ata acp i gtm (ap , &acpi−>gtm) < 0)

re turn −ENODEV;

return a t a s f f p r e r e s e t (l ink , dead l ine) ;
@@ −195 ,7 +195 ,7 @@ s t a t i c i n t p a c p i p o r t s t a r t (s t r u c t ata p

s t r u c t pc i dev ∗pdev = to pc i d ev (ap−>host−>dev) ;
s t r u c t pata acp i ∗ acp i ;

− i f (ap−>acp i hand l e == NULL)
+ i f (a ta ap acp i hand l e (ap) == NULL)

return −ENODEV;

acp i = ap−>pr i va t e da ta = devm kzal loc (&pdev−>dev , s i z e o f (s t r u c t pata acp i) , GFP KERNEL) ;
Index : l i nux / inc lude / l i nux / l i b a t a . h
===
−−− l i nux . o r i g / inc lude / l i nux / l i b a t a . h
+++ l inux / inc lude / l i nux / l i b a t a . h
@@ −544 ,9 +544 ,6 @@ s t r u c t a ta hos t {

46

A.1. Patch Mails for the Linux Kernel

s t r u c t mutex eh mutex ;
s t r u c t t a s k s t r u c t ∗ eh owner ;

−#i f d e f CONFIG ATA ACPI
− acp i hand l e acp i hand l e ;
−#end i f

s t r u c t a ta po r t ∗ s implex c la imed ; /∗ channel owning the DMA ∗/
s t r u c t a ta po r t ∗ por t s [0] ;

} ;
@@ −614 ,7 +611 ,6 @@ s t r u c t a t a dev i c e {

s t r u c t s c s i d e v i c e ∗ sdev ; /∗ attached SCSI dev i c e ∗/
void ∗ pr i va t e da ta ;

#i f d e f CONFIG ATA ACPI
− acp i hand l e acp i hand l e ;

union a cp i o b j e c t ∗ g t f c a ch e ;
unsigned i n t g t f f i l t e r ;

#end i f
@@ −796 ,7 +792 ,6 @@ s t r u c t a ta po r t {

void ∗ pr i va t e da ta ;

#i f d e f CONFIG ATA ACPI
− acp i hand l e acp i hand l e ;

s t r u c t ata acp i gtm a c p i i n i t g tm ; /∗ use a t a a cp i i n i t g tm () ∗/
#end i f

/∗ owned by EH ∗/
@@ −1111 ,6 +1106 ,8 @@ in t ata acp i s tm (s t r u c t a ta po r t ∗ap , co
i n t ata acp i gtm (s t r u c t a ta po r t ∗ap , s t r u c t ata acp i gtm ∗stm) ;
unsigned long ata acp i gtm xfermask (s t r u c t a t a dev i c e ∗dev ,

const s t r u c t ata acp i gtm ∗gtm) ;
+acp i hand l e a ta ap acp i hand l e (s t r u c t a ta po r t ∗ap) ;
+acp i hand l e a ta dev acp i hand l e (s t r u c t a t a dev i c e ∗dev) ;
i n t a t a a cp i c b l 8 0w i r e (s t r u c t a ta po r t ∗ap , const s t r u c t ata acp i gtm ∗gtm) ;
#e l s e
s t a t i c i n l i n e const s t r u c t ata acp i gtm ∗ a t a a cp i i n i t g tm (s t r u c t a ta po r t ∗ap)

[PATCH 4/7] acpi: Add support for linking docks to the objects they contain

Subject : [PATCH 4/7] acp i : Add support f o r l i n k i n g docks to the ob j e c t s they conta in

From : Matthew Garrett <mjg@redhat . com>

When undocking , i t ’ s h e l p f u l to know which dev i c e s are going to
d i sappear . This patch adds support f o r adding syml inks to the dev i c e
in to the docking bay .

Signed−o f f−by : Matthew Garrett <mjg@redhat . com>
Acked−by : Holger Macht <holger@homac . de>
−−−
d r i v e r s / acp i /dock . c | 78 ++
inc lude / acp i / a c p i d r i v e r s . h | 10 +++++
2 f i l e s changed , 88 i n s e r t i o n s (+)

Index : l i nux / d r i v e r s / acp i /dock . c
===
−−− l i nux . o r i g / d r i v e r s / acp i /dock . c
+++ l inux / d r i v e r s / acp i /dock . c
@@ −276 ,6 +276 ,84 @@ in t i s d o c k d e v i c e (acp i hand l e handle)
EXPORT SYMBOLGPL(i s d o c k d e v i c e) ;

/∗∗
+ ∗ do ck l i n k d ev i c e − l i n k a dev i ce from the dock
+ ∗ @handle : acp i handle o f the p o t e n t i a l l y dependent dev i ce
+ ∗/
+s t r u c t dev i c e ∗∗ do ck l i n k d ev i c e (acp i hand l e handle)

47

A. Appendix

+{
+ s t ru c t dev i ce ∗dev = a c p i g e t p h y s i c a l d e v i c e (handle) ;
+ s t r u c t dock s t a t i on ∗ dock s t a t i on ;
+ in t ret , dock = 0 ;
+ s t r u c t dev i ce ∗∗ dev i c e s ;
+
+ dev i c e s = kmalloc (dock s ta t i on count ∗ s i z e o f (s t r u c t dev i c e ∗) ,
+ GFP KERNEL) ;
+
+ i f (! dev)
+ return NULL;
+
+ i f (i s do ck (handle)) {
+ put dev i c e (dev) ;
+ return NULL;
+ }
+
+ l i s t f o r e a c h e n t r y (dock s ta t i on , &dock s ta t i on s , s i b l i n g) {
+ i f (f i nd dock dependent dev i c e (dock s ta t i on , handle)) {
+ re t = s y s f s c r e a t e l i n k (&dock s ta t i on−>dock device−>dev . kobj ,
+ &dev−>kobj , dev name (dev)) ;
+ WARNON(r e t) ;
+ dev i c e s [dock] = &dock s ta t i on−>dock device−>dev ;
+ dock++;
+ }
+ }
+ i f (! dock)
+ put dev i c e (dev) ;
+
+ dev i c e s [dock] = NULL;
+ return dev i c e s ;
+}
+EXPORT SYMBOLGPL(do ck l i n k d ev i c e) ;
+
+/∗∗
+ ∗ dock un l i nk dev i c e − unl ink a dev i ce from the dock
+ ∗ @handle : acp i handle o f the p o t e n t i a l l y dependent dev i ce
+ ∗/
+s t r u c t dev i c e ∗∗ dock un l i nk dev i c e (acp i hand l e handle)
+{
+ s t ru c t dev i ce ∗dev = a c p i g e t p h y s i c a l d e v i c e (handle) ;
+ s t r u c t dock s t a t i on ∗ dock s t a t i on ;
+ in t dock = 0 ;
+ s t r u c t dev i ce ∗∗ dev i c e s =
+ kmalloc (dock s ta t i on count ∗ s i z e o f (s t r u c t dev i c e ∗) ,
+ GFP KERNEL) ;
+
+ i f (! dev)
+ return NULL;
+
+ i f (i s do ck (handle)) {
+ put dev i c e (dev) ;
+ return NULL;
+ }
+
+ l i s t f o r e a c h e n t r y (dock s ta t i on , &dock s ta t i on s , s i b l i n g) {
+ i f (f i nd dock dependent dev i c e (dock s ta t i on , handle)) {
+ sy s f s r emov e l i n k (&dock s ta t i on−>dock device−>dev . kobj ,
+ dev name (dev)) ;
+ dev i c e s [dock] = &dock s ta t i on−>dock device−>dev ;
+ dock++;
+ }
+ }
+ /∗ An extra r e f e r e n c e has been held whi l e the l i n k ex i s t ed ∗/
+ i f (dock)
+ put dev i c e (dev) ;
+
+ put dev i c e (dev) ;

48

A.1. Patch Mails for the Linux Kernel

+ dev i c e s [dock] = NULL;
+ return dev i c e s ;
+}
+EXPORT SYMBOLGPL(dock un l i nk dev i c e) ;
+
+/∗∗
∗ dock present − s e e i f the dock s t a t i o n i s pre sent .
∗ @ds : the dock s t a t i o n
∗

Index : l i nux / inc lude / acp i / a c p i d r i v e r s . h
===
−−− l i nux . o r i g / inc lude / acp i / a c p i d r i v e r s . h
+++ l inux / inc lude / acp i / a c p i d r i v e r s . h
@@ −131 ,6 +131 ,8 @@ extern i n t r e g i s t e r h o t p l u g do c k d e v i c e (

const s t r u c t acp i dock ops ∗ops ,
void ∗ context) ;

extern void un r e g i s t e r ho tp l u g do ck dev i c e (acp i hand l e handle) ;
+extern s t r u c t dev i c e ∗∗ do ck l i n k d ev i c e (acp i hand l e handle) ;
+extern s t r u c t dev i c e ∗∗ dock un l i nk dev i c e (acp i hand l e handle) ;
#e l s e
s t a t i c i n l i n e i n t i s d o c k d e v i c e (acp i hand l e handle)
{

@@ −152 ,6 +154 ,14 @@ s t a t i c i n l i n e i n t r e g i s t e r h o t p l u g d o c k
s t a t i c i n l i n e void un r e g i s t e r ho tp l u g do ck dev i c e (acp i hand l e handle)
{
}

+s t a t i c i n l i n e s t r u c t dev i c e ∗∗ do ck l i n k d ev i c e (acp i hand l e handle)
+{
+ return NULL;
+}
+s t a t i c i n l i n e s t r u c t dev i c e ∗∗ dock un l i nk dev i c e (acp i hand l e handle)
+{
+ return NULL;
+}
#end i f

#end i f /∗ ACPI DRIVERS H ∗/

[PATCH 5/7] libata: Add links between removable devices and docks

Subject : [PATCH 5/7] l i b a t a : Add l i n k s between removable dev i c e s and docks

From : Matthew Garrett <mjg@redhat . com>

Attaching ata ob j e c t s to docks makes i t p o s s i b l e to i d e n t i f y which dock
should be used to t r i g g e r the removal o f a device , and a l s o a l l ows
use r space to c l e an l y unmount f i l e s y s t em s be f o r e complet ing a
user−r eques ted undocking .

Signed−o f f−by : Matthew Garrett <mjg@redhat . com>
Acked−by : Holger Macht <holger@homac . de>
−−−
l i ba ta−acp i . c | 20 ++++++++++++++++++++
l iba ta−s c s i . c | 3 +++
l i b a t a . h | 4 ++++
3 f i l e s changed , 27 i n s e r t i o n s (+)

Index : l i nux / d r i v e r s / ata / l i ba ta−acp i . c
===
−−− l i nux . o r i g / d r i v e r s / ata / l i ba ta−acp i . c
+++ l inux / d r i v e r s / ata / l i ba ta−acp i . c
@@ −955 ,6 +955 ,26 @@ void a t a a c p i o n d i s a b l e (s t r u c t a ta dev i

a t a a c p i c l e a r g t f (dev) ;
}

49

A. Appendix

+void a ta acp i b ind dock (s t r u c t a t a dev i c e ∗dev)
+{
+ s t ru c t dev i ce ∗∗docks ;
+
+ i f (! a t a dev acp i hand l e (dev))
+ return ;
+ docks = dock l i n k d ev i c e (a ta dev acp i hand l e (dev)) ;
+ k f r e e (docks) ;
+}
+
+void ata acp i unb ind dock (s t r u c t a t a dev i c e ∗dev)
+{
+ s t ru c t dev i ce ∗∗docks ;
+
+ i f (! a t a dev acp i hand l e (dev))
+ return ;
+ docks = dock un l i nk dev i c e (a ta dev acp i hand l e (dev)) ;
+ k f r e e (docks) ;
+}
+
s t a t i c i n t i s p c i a t a (s t r u c t dev i c e ∗dev)
{

s t r u c t pc i dev ∗pdev ;
Index : l i nux / d r i v e r s / ata / l i ba ta−s c s i . c
===
−−− l i nux . o r i g / d r i v e r s / ata / l i ba ta−s c s i . c
+++ l inux / d r i v e r s / ata / l i ba ta−s c s i . c
@@ −3443 ,6 +3443 ,7 @@ void a t a s c s i s c a n h o s t (s t r u c t a ta po r t

i f (! IS ERR(sdev)) {
dev−>sdev = sdev ;
s c s i d e v i c e p u t (sdev) ;

+ ata acp i b ind dock (dev) ;
} e l s e {

dev−>sdev = NULL;
}

@@ −3543 ,6 +3544 ,8 @@ s t a t i c void a ta s c s i r emove dev (s t r u c t a
sdev = dev−>sdev ;
dev−>sdev = NULL;

+ ata acp i unb ind dock (dev) ;
+

i f (sdev) {
/∗ I f user i n i t i a t e d unplug ra c e s with us , sdev can go
∗ away underneath us a f t e r the host l ock and

Index : l i nux / d r i v e r s / ata / l i b a t a . h
===
−−− l i nux . o r i g / d r i v e r s / ata / l i b a t a . h
+++ l inux / d r i v e r s / ata / l i b a t a . h
@@ −116 ,6 +116 ,8 @@ extern void a t a a c p i o n d i s a b l e (s t r u c t a
extern void a t a a c p i s e t s t a t e (s t r u c t a ta po r t ∗ap , pm message t s t a t e) ;
extern i n t a t a a c p i r e g i s t e r (void) ;
extern void a t a a c p i u n r e g i s t e r (void) ;

+extern void a ta acp i b ind dock (s t r u c t a t a dev i c e ∗dev) ;
+extern void ata acp i unb ind dock (s t r u c t a t a dev i c e ∗dev) ;
#e l s e
s t a t i c i n l i n e void a t a a c p i d i s s o c i a t e (s t r u c t a ta hos t ∗host) { }
s t a t i c i n l i n e i n t a ta acp i on suspend (s t r u c t a ta po r t ∗ap) { r e turn 0 ; }

@@ −126 ,6 +128 ,8 @@ s t a t i c i n l i n e void a t a a c p i s e t s t a t e (s t
pm message t s t a t e) { }

s t a t i c i n l i n e i n t a t a a c p i r e g i s t e r (void) { r e turn 0 ; }
s t a t i c void a t a a c p i u n r e g i s t e r (void) { }

+s t a t i c void a ta acp i b ind dock (s t r u c t a t a dev i c e ∗dev) { }
+s t a t i c void ata acp i unb ind dock (s t r u c t a t a dev i c e ∗dev) { }
#end i f

/∗ l i ba ta−s c s i . c ∗/

50

A.1. Patch Mails for the Linux Kernel

[PATCH 6/7] libata: Generate and pass correct acpi handles

Subject : [PATCH 6/7] l i b a t a : Generate and pass c o r r e c t acp i handles

Fix ACPI handle gene ra t i on f o r dev i c e handles and pass the c o r r e c t
handles to the dock d r i v e r .

Signed−o f f−by : Holger Macht <holger@homac . de>
−−−
l i ba ta−acp i . c | 10 +++−−−−−−−
1 f i l e changed , 3 i n s e r t i o n s (+) , 7 d e l e t i o n s (−)

Index : l i nux / d r i v e r s / ata / l i ba ta−acp i . c
===
−−− l i nux . o r i g / d r i v e r s / ata / l i ba ta−acp i . c
+++ l inux / d r i v e r s / ata / l i ba ta−acp i . c
@@ −74,9 +74 ,6 @@ acp i hand l e a ta dev acp i hand l e (s t r u c t a

a c p i i n t e g e r adr ;
s t r u c t a ta po r t ∗ap = dev−>l i nk−>ap ;

− i f (dev−>sdev)
− r e turn DEVICE ACPI HANDLE(&dev−>sdev−>sdev gendev) ;
−

i f (ap−>f l a g s & ATA FLAG ACPI SATA) {
i f (! sata pmp attached (ap))

adr = SATA ADR(ap−>port no , NO PORTMULT) ;
@@ −1004 ,8 +1001 ,7 @@ s t a t i c i n t a t a a cp i b i nd ho s t (s t r u c t dev

i f (! ∗ handle)
re turn −ENODEV;

− r e g i s t e r h o t p l u g do c k d e v i c e (a ta ap acp i hand l e (ap) ,
− &ata acp i ap dock ops , ap) ;
+ r e g i s t e r h o t p l u g do c k d e v i c e (∗ handle , &ata acp i ap dock ops , ap) ;

r e turn 0 ;
}

@@ −1027 ,8 +1023 ,8 @@ s t a t i c i n t a t a a cp i b i nd d ev i c e (s t r u c t d

i f (! ∗ handle)
re turn −ENODEV;

− r e g i s t e r h o t p l u g do c k d e v i c e (a ta dev acp i hand l e (ata dev) ,
− &ata acp i dev dock ops , ata dev) ;
+
+ r e g i s t e r h o t p l u g do c k d e v i c e (∗ handle , &ata acp i dev dock ops , ata dev) ;

r e turn 0 ;
}

[PATCH 7/7] acpi: Prevent duplicate hotplug device registration on dock stations

Subject : [PATCH 7/7] acp i : Prevent dup l i c a t e hotplug dev i ce r e g i s t r a t i o n on dock s t a t i o n s

r e g i s t e r h o t p l u g d o c k d e v i c e () must only be c a l l e d once per ACPI
handle . However , ACPI g lue i n f r a s t r u c t u r e does not a l low to prevent
mu l t ip l e f i n d d e v i c e () i nvoca t i on s when a s c s i bus or dev i ce appears or
d i sappear s . So export a func t i on from the dock d r i v e r to check i f a
s p e c i f i c hotplug dock dev i ce i s a l r eady r e g i s t e r e d and c a l l t h i s b e f o r e
r e g i s t e r i n g .

Signed−o f f−by : Holger Macht <holger@homac . de>
−−−
d r i v e r s / acp i /dock . c | 20 ++++++++++++++++++++
dr i v e r s / ata / l i ba ta−acp i . c | 6 ++++−−
i n c l ude / acp i / a c p i d r i v e r s . h | 1 +

51

A. Appendix

3 f i l e s changed , 25 i n s e r t i o n s (+) , 2 d e l e t i o n s (−)

Index : l i nux / d r i v e r s / acp i /dock . c
===
−−− l i nux . o r i g / d r i v e r s / acp i /dock . c
+++ l inux / d r i v e r s / acp i /dock . c
@@ −720 ,6 +720 ,26 @@ void un r e g i s t e r ho tp l u g do ck dev i c e (acp i
}
EXPORT SYMBOLGPL(un r e g i s t e r ho tp l u g do ck dev i c e) ;

+in t i s r e g i s t e r e d h o t p l u g d o c k d e v i c e (const s t r u c t acp i dock ops ∗ops)
+{
+ s t ru c t dock dependent dev ice ∗dd ;
+ s t r u c t dock s t a t i on ∗ds ;
+
+ l i s t f o r e a c h e n t r y (ds , &dock s ta t i on s , s i b l i n g) {
+ mutex lock(&ds−>hp lock) ;
+ l i s t f o r e a c h e n t r y (dd , &ds−>hotp lug dev i c e s , h o t p l u g l i s t) {
+ i f (ops == dd−>ops) {
+ mutex unlock(&ds−>hp lock) ;
+ return 1 ;
+ }
+ }
+ mutex unlock(&ds−>hp lock) ;
+ }
+
+ return 0 ;
+}
+EXPORTSYMBOL(i s r e g i s t e r e d h o t p l u g d o c k d e v i c e) ;
+
/∗∗
∗ hand l e e j e c t r e qu e s t − handle an undock reque s t check ing f o r e r r o r c ond i t i on s
∗

Index : l i nux / d r i v e r s / ata / l i ba ta−acp i . c
===
−−− l i nux . o r i g / d r i v e r s / ata / l i ba ta−acp i . c
+++ l inux / d r i v e r s / ata / l i ba ta−acp i . c
@@ −1001 ,7 +1001 ,8 @@ s t a t i c i n t a t a a cp i b i nd ho s t (s t r u c t dev

i f (! ∗ handle)
re turn −ENODEV;

− r e g i s t e r h o t p l u g do c k d e v i c e (∗ handle , &ata acp i ap dock ops , ap) ;
+ i f (! i s r e g i s t e r e d h o t p l u g d o c k d e v i c e (&ata acp i ap dock ops))
+ r e g i s t e r h o t p l u g d o c k d e v i c e (∗ handle , &ata acp i ap dock ops , ap) ;

r e turn 0 ;
}

@@ −1024 ,7 +1025 ,8 @@ s t a t i c i n t a t a a cp i b i nd d ev i c e (s t r u c t d
i f (! ∗ handle)

re turn −ENODEV;

− r e g i s t e r h o t p l u g do c k d e v i c e (∗ handle , &ata acp i dev dock ops , ata dev) ;
+ i f (! i s r e g i s t e r e d h o t p l u g d o c k d e v i c e (&ata acp i dev dock ops))
+ r e g i s t e r h o t p l u g d o c k d e v i c e (∗ handle , &ata acp i dev dock ops , ata dev) ;

r e turn 0 ;
}

Index : l i nux / inc lude / acp i / a c p i d r i v e r s . h
===
−−− l i nux . o r i g / inc lude / acp i / a c p i d r i v e r s . h
+++ l inux / inc lude / acp i / a c p i d r i v e r s . h
@@ −131 ,6 +131 ,7 @@ extern i n t r e g i s t e r h o t p l u g do c k d e v i c e (

const s t r u c t acp i dock ops ∗ops ,
void ∗ context) ;

extern void un r e g i s t e r ho tp l u g do ck dev i c e (acp i hand l e handle) ;
+extern i n t i s r e g i s t e r e d h o t p l u g d o c k d e v i c e (const s t r u c t acp i dock ops ∗ops) ;
extern s t r u c t dev i ce ∗∗ do ck l i n k d ev i c e (acp i hand l e handle) ;
extern s t r u c t dev i ce ∗∗ dock un l i nk dev i c e (acp i hand l e handle) ;

52

A.1. Patch Mails for the Linux Kernel

#e l s e

A.1.2. Second Iteration of Patches (2012-01-20)

[PATCHv2 1/8] scsi: Add wrapper to access and set scsi bus type in struct
acpi bus type

Subject : [PATCHv2 1/8] s c s i : Add wrapper to a c c e s s and s e t s c s i b u s t yp e in s t r u c t acp i bus type

For being ab le to bind ata dev i c e s aga in s t acp i dev ices , s c s i b u s t yp e
needs to be s e t as bus in s t r u c t acp i bus type . So add wrapper to
s c s i l i b to accompl ish that .

Signed−o f f−by : Holger Macht <holger@homac . de>
−−−
d r i v e r s / s c s i / s c s i l i b . c | 11 +++++++++++
inc lude / s c s i / s c s i . h | 10 ++++++++++
2 f i l e s changed , 21 i n s e r t i o n s (+) , 0 d e l e t i o n s (−)

d i f f −−g i t a/ d r i v e r s / s c s i / s c s i l i b . c b/ d r i v e r s / s c s i / s c s i l i b . c
index b2c95db . . 7 9 f2654 100644
−−− a/ d r i v e r s / s c s i / s c s i l i b . c
+++ b/ d r i v e r s / s c s i / s c s i l i b . c
@@ −68,6 +68 ,17 @@ s t a t i c s t r u c t s c s i h o s t s g p o o l s c s i s g p o o l s [] = {

s t r u c t kmem cache ∗ s c s i s db c a ch e ;

+#i f d e f CONFIG ACPI
+#inc lude <acp i / acp i bus . h>
+
+in t s c s i r e g i s t e r a c p i b u s t y p e (s t r u c t acp i bus type ∗bus)
+{
+ bus−>bus = &s c s i b u s t yp e ;
+ return r e g i s t e r a c p i b u s t y p e (bus) ;
+}
+EXPORT SYMBOLGPL(s c s i r e g i s t e r a c p i b u s t y p e) ;
+#end i f
+
/∗
∗ When to re invoke queueing a f t e r a r e s ou r c e shor tage . It ’ s 3 msecs to
∗ not change behaviour from the prev ious unplug mechanism , exper imentat ion

d i f f −−g i t a/ in c lude / s c s i / s c s i . h b/ inc lude / s c s i / s c s i . h
index 8001 ae4 . . 5 4 8 f e9a 100644
−−− a/ inc lude / s c s i / s c s i . h
+++ b/ inc lude / s c s i / s c s i . h
@@ −213 ,6 +213 ,16 @@ scs i command s ize (const unsigned char ∗cmnd)

s c s i v a r l e n c db l e n g t h (cmnd) : COMMAND SIZE(cmnd [0]) ;
}

+#i f d e f CONFIG ACPI
+s t r u c t acp i bus type ;
+
+extern i n t
+s c s i r e g i s t e r a c p i b u s t y p e (s t r u c t acp i bus type ∗bus) ;
+
+s t a t i c i n l i n e void
+s c s i u n r e g i s t e r a c p i b u s t y p e (s t r u c t acp i bus type ∗bus) { r e turn ; }
+#end i f
+
/∗
∗ SCSI Arch i t e c tu r e Model (SAM) Status codes . Taken from SAM−3 d ra f t
∗ T10/1561−D Revis ion 4 Draft dated 7 th November 2002 .

−− 1 . 7 . 8

53

A. Appendix

[PATCHv2 8/8] libata: Use correct PCI devices

Subject : [PATCHv2 8/8] l i b a t a : Use c o r r e c t PCI dev i c e s

Commit 9 a6d6a2ddabbd32c07f6a38b659e5f3db319fa5a made ata por t s parent
dev i c e s o f s c s i hosts , so we need to go yet another l e v e l up to be ab le
to use the c o r r e c t PCI dev i c e s .

Signed−o f f−by : Holger Macht <holger@homac . de>
−−−
d r i v e r s / ata / l i ba ta−acp i . c | 6 +++−−−
1 f i l e s changed , 3 i n s e r t i o n s (+) , 3 d e l e t i o n s (−)

d i f f −−g i t a/ d r i v e r s / ata / l i ba ta−acp i . c b/ d r i v e r s / ata / l i ba ta−acp i . c
index a39f9b3 . . b03e468 100644
−−− a/ d r i v e r s / ata / l i ba ta−acp i . c
+++ b/ d r i v e r s / ata / l i ba ta−acp i . c
@@ −996 ,7 +996 ,7 @@ s t a t i c i n t a t a a cp i b i nd ho s t (s t r u c t dev i ce ∗dev , i n t host , a cp i hand l e ∗handle)

i f (ap−>f l a g s & ATA FLAG ACPI SATA)
return −ENODEV;

− ∗handle = a c p i g e t c h i l d (DEVICE ACPI HANDLE(dev−>parent) , ap−>port no) ;
+ ∗handle = a c p i g e t c h i l d (DEVICE ACPI HANDLE(dev−>parent−>parent) , ap−>port no) ;

i f (! ∗ handle)
re turn −ENODEV;

@@ −1036 ,13 +1036 ,13 @@ s t a t i c i n t a t a a c p i f i n d d e v i c e (s t r u c t dev i ce ∗dev , acp i hand l e ∗handle)
unsigned i n t host , channel , id , lun ;

i f (s s c an f (dev name (dev) , ” host%u” , &host) == 1) {
− i f (! i s p c i a t a (dev−>parent))
+ i f (! i s p c i a t a (dev−>parent−>parent))

re turn −ENODEV;

return a t a a cp i b i nd ho s t (dev , host , handle) ;
} e l s e i f (s s c an f (dev name (dev) , ”%d:%d:%d:%d” ,

&host , &channel , &id , &lun) == 4) {
− i f (! i s p c i a t a (dev−>parent−>parent−>parent))
+ i f (! i s p c i a t a (dev−>parent−>parent−>parent−>parent))

re turn −ENODEV;

return a t a a cp i b i nd d ev i c e (dev , channel , id , handle) ;
−− 1 . 7 . 8

A.1.3. Additional Patches (2012-02-18)

[PATCH] dock: fix bootup oops and other dock link breakage

[PATCH] dock : f i x bootup oops and other dock l i nk breakage

From : Hugh Dick ins <hughd <at> goog l e . com>

do ck l i n k d ev i c e () and dock un l i nk dev i c e () should b a i l out e a r l y
to avoid oops on zero−l ength kmalloc () when dock s ta t i on count i s 0 .

But isn ’ t the re an o f f−by−one in that kmalloc () l ength anyway?
An extra NULL appended at the end sugge s t s so .

Rework the o rde r ing with gotos on f a i l u r e to f i x s e v e r a l i s s u e s .

And presumably dock un l i nk dev i c e () should be pr e s en t ing the same
i n t e r f a c e as do ck l i n k d ev i c e () , with NULL returned when none found .

Signed−o f f−by : Hugh Dick ins <hughd <at> goog l e . com>
−−−

54

A.1. Patch Mails for the Linux Kernel

d r i v e r s / acp i /dock . c | 69 +++++++++++++++++++++++++++++−−−−−−−−−−−−−
1 f i l e changed , 49 i n s e r t i o n s (+) , 20 d e l e t i o n s (−)

−−− l inux−next / d r i v e r s / acp i /dock . c 2012−02−17 08 :02 :12 .280064984 −0800
+++ f i x ed / d r i v e r s / acp i /dock . c 2012−02−18 09 :57 :54 .926244796 −0800
@@ −281 ,21 +281 ,25 @@ EXPORT SYMBOLGPL(i s d o c k d e v i c e) ;
∗/

s t r u c t dev i c e ∗∗ do ck l i n k d ev i c e (acp i hand l e handle)
{
− s t r u c t dev i c e ∗dev = a c p i g e t p h y s i c a l d e v i c e (handle) ;
+ s t r u c t dev i ce ∗dev ;

s t r u c t dock s t a t i on ∗ dock s t a t i on ;
i n t ret , dock = 0 ;
s t r u c t dev i c e ∗∗ dev i c e s ;

− dev i c e s = kmalloc (dock s ta t i on count ∗ s i z e o f (s t r u c t dev i c e ∗) ,
− GFP KERNEL) ;
+ i f (! dock s ta t i on count)
+ return NULL;

− i f (! dev)
+ i f (i s do ck (handle))

re turn NULL;

− i f (i s do ck (handle)) {
− put dev i c e (dev) ;
+ dev = a cp i g e t p h y s i c a l d e v i c e (handle) ;
+ i f (! dev)

re turn NULL;
− }
+
+ dev i c e s = kmalloc ((dock s ta t i on count + 1) ∗ s i z e o f (s t r u c t dev i c e ∗) ,
+ GFP KERNEL) ;
+ i f (! d ev i c e s)
+ goto put ;

l i s t f o r e a c h e n t r y (dock s ta t i on , &dock s ta t i on s , s i b l i n g) {
i f (f i nd dock dependent dev i c e (dock s ta t i on , handle)) {

@@ −304 ,13 +308 ,23 @@ s t r u c t dev i c e ∗∗ do ck l i n k d ev i c e (acp i ha
WARNON(r e t) ;
d ev i c e s [dock] = &dock s ta t i on−>dock device−>dev ;
dock++;

+ i f (dock == dock s ta t i on count)
+ goto out ;

}
}

− i f (! dock)
− put dev i c e (dev) ;

+ i f (! dock)
+ goto f r e e ;
+out :
+ /∗ Keep a r e f e r e n c e to the dev i ce whi l e the l i n k e x i s t s ∗/

dev i c e s [dock] = NULL;
re turn dev i c e s ;

+
+f r e e :
+ k f r e e (dev i c e s) ;
+put :
+ put dev i c e (dev) ;
+ return NULL;
}
EXPORT SYMBOLGPL(do ck l i n k d ev i c e) ;

@@ −320 ,20 +334 ,25 @@ EXPORT SYMBOLGPL(do ck l i n k d ev i c e) ;
∗/

s t r u c t dev i c e ∗∗ dock un l i nk dev i c e (acp i hand l e handle)
{

55

A. Appendix

− s t r u c t dev i c e ∗dev = a c p i g e t p h y s i c a l d e v i c e (handle) ;
+ s t r u c t dev i ce ∗dev ;

s t r u c t dock s t a t i on ∗ dock s t a t i on ;
i n t dock = 0 ;

− s t r u c t dev i c e ∗∗ dev i c e s =
− kmalloc (dock s ta t i on count ∗ s i z e o f (s t r u c t dev i c e ∗) ,
− GFP KERNEL) ;
+ s t r u c t dev i ce ∗∗ dev i c e s ;

− i f (! dev)
+ i f (! dock s ta t i on count)

re turn NULL;

− i f (i s do ck (handle)) {
− put dev i c e (dev) ;
+ i f (i s do ck (handle))

re turn NULL;
− }
+
+ dev = a cp i g e t p h y s i c a l d e v i c e (handle) ;
+ i f (! dev)
+ return NULL;
+
+ dev i c e s = kmalloc ((dock s ta t i on count + 1) ∗ s i z e o f (s t r u c t dev i c e ∗) ,
+ GFP KERNEL) ;
+ i f (! d ev i c e s)
+ goto put ;

l i s t f o r e a c h e n t r y (dock s ta t i on , &dock s ta t i on s , s i b l i n g) {
i f (f i nd dock dependent dev i c e (dock s ta t i on , handle)) {

@@ −341 ,15 +360 ,25 @@ s t r u c t dev i c e ∗∗ dock un l i nk dev i c e (a cp i
dev name (dev)) ;

d ev i c e s [dock] = &dock s ta t i on−>dock device−>dev ;
dock++;

+ i f (dock == dock s ta t i on count)
+ goto out ;

}
}

− /∗ An extra r e f e r e n c e has been held whi l e the l i n k ex i s t ed ∗/
− i f (dock)
− put dev i c e (dev) ;

+ i f (! dock)
+ goto f r e e ;
+out :
+ /∗ An extra r e f e r e n c e has been held whi l e the l i n k ex i s t ed ∗/
+ put dev i c e (dev) ;

put dev i c e (dev) ;
d ev i c e s [dock] = NULL;
re turn dev i c e s ;

+
+f r e e :
+ k f r e e (dev i c e s) ;
+put :
+ put dev i c e (dev) ;
+ return NULL;
}
EXPORT SYMBOLGPL(dock un l i nk dev i c e) ;

[PATCH] acpi: Fix compiler error when setting CONFIG ACPI DOCK=n

Subject : [PATCH] acp i : Fix compi le r e r r o r when s e t t i n g CONFIG ACPI DOCK=n

When compi l ing with CONFIG ACPI DOCK=n ,
i s r e g i s t e r e d h o t p l u g d o c k d e v i c e () needs to be de f ined

Signed−o f f−by : Holger Macht <ho lge r <at> homac . de>

56

A.2. Patches for Userland

−−−
i n c l ude / acp i / a c p i d r i v e r s . h | 4 ++++
1 f i l e s changed , 4 i n s e r t i o n s (+) , 0 d e l e t i o n s (−)

d i f f −−g i t a/ in c lude / acp i / a c p i d r i v e r s . h b/ inc lude / acp i / a c p i d r i v e r s . h
index 3 c4e381 . . 3319574 100644
−−− a/ inc lude / acp i / a c p i d r i v e r s . h
+++ b/ inc lude / acp i / a c p i d r i v e r s . h
@@ −155 ,6 +155 ,10 @@ s t a t i c i n l i n e i n t r e g i s t e r h o t p l u g do c k d e v i c e (acp i hand l e handle ,
s t a t i c i n l i n e void un r e g i s t e r ho tp l u g do ck dev i c e (acp i hand l e handle)
{
}

+s t a t i c i n l i n e i n t i s r e g i s t e r e d h o t p l u g d o c k d e v i c e (const s t r u c t acp i dock ops ∗ops)
+{
+ return 0 ;
+}
s t a t i c i n l i n e s t r u c t dev i ce ∗∗ do ck l i n k d ev i c e (acp i hand l e handle)
{

r e turn NULL;
−−
1 . 7 . 7

A.2. Patches for Userland

PATCH: Add new property DependingOnDockStation for drives

commit 2 a7b8c14321ce38645f f44df f994e46e04a5a077
Author : Holger Macht <holger@homac . de>
Date : Sun Jan 1 18 : 21 : 13 2012 +0100

Add new property DependingOnDockStation f o r d r i v e s

Add new property DependingOnDockStation which s p e c i f i e s whether a dr iv e
i s depending on a dock s t a t i o n (e . g . on laptops) . In other words ,
whether the dr i v e i s on the dock s ta t i on , such as DVD dr i v e s . This way ,
desktops can s a f e l y unmount f i l e s y s t em s when they know they w i l l
d i sappear when an undock i s reques ted .

Signed−o f f−by : Holger Macht <holger@homac . de>

d i f f −−g i t a/data/ org . f r e ede sk top . UDisks2 . xml b/data/ org . f r e ede sk top . UDisks2 . xml
index e88af62 . . f6da796 100644
−−− a/data/ org . f r e ede sk top . UDisks2 . xml
+++ b/data/ org . f r e ede sk top . UDisks2 . xml
@@ −139 ,6 +139 ,11 @@

−−>
<property name=”MediaRemovable” type=”b” ac c e s s=”read”/>

+ <!−− DependingOnDockStation :
+ Whether the dr iv e i s depending on a dock s t a t i o n (i s on a dock s t a t i o n)
+ −−>
+ <property name=”DependingOnDockStation” type=”b” ac c e s s=”read”/>
+

<!−− MediaAvai lable : Set to %FALSE i f no medium i s a v a i l a b l e .
This i s always %TRUE i f #org . f r e ede sk top . UDisks2 . Drive : MediaChangeDetected i s %FALSE.

−−>
d i f f −−g i t a/ s r c / ud i s k s l i nuxd r i v e . c b/ s r c / ud i s k s l i nuxd r i v e . c
index cdfd281 . . 5 9 5 7 bbb 100644
−−− a/ s r c / ud i s k s l i nuxd r i v e . c
+++ b/ s r c / ud i s k s l i nuxd r i v e . c
@@ −195 ,6 +195 ,80 @@ pt r s t r a r r ay compar e (const gchar ∗∗a ,
}

s t a t i c void
+get dock dependent dev i c e s (char ∗dockdir ,
+ GSList ∗∗ l i s t)

57

A. Appendix

+{
+ GUdevDevice ∗ dev i ce ;
+ GFileEnumerator ∗ f i l e enum ;
+ GFi l e In fo ∗ i n f o ;
+ GFile ∗ f i l e ;
+ GUdevClient ∗ c l i e n t ;
+
+ c l i e n t = g udev c l i en t new (NULL) ;
+ dev i ce = g ud ev c l i e n t qu e r y by s y s f s p a t h (c l i e n t , dockdi r) ;
+
+ /∗ check i f we have a dock s t a t i on ∗/
+ const gchar ∗ const ∗ type = g u d e v d e v i c e g e t s y s f s a t t r a s s t r v (device , ” type ”) ;
+ i f (type == NULL)
+ return ;
+ i f (strcmp (type [0] , ” dock s t a t i on ”) != 0)
+ return ;
+
+ f i l e = g f i l e n ew f o r p a t h (dockdir) ;
+ f i l e enum = g f i l e e n ume r a t e c h i l d r e n (f i l e , G FILE ATTRIBUTE STANDARD NAME ” ,”
+ G FILE ATTRIBUTE STANDARD IS SYMLINK ” ,”
+ G FILE ATTRIBUTE STANDARD SYMLINK TARGET,
+ 0 , NULL, 0) ;
+ i f (f i l e enum == NULL)
+ return ;
+
+ whi le ((i n f o = g f i l e e n um e r a t o r n e x t f i l e (f i l e enum , NULL, 0)) != NULL) {
+ const gchar ∗ t a r g e t = g f i l e i n f o g e t s ym l i n k t a r g e t (i n f o) ;
+ gchar ∗pwd ;
+
+ i f (t a r g e t == NULL)
+ cont inue ;
+
+ i f (! g regex match s imple (” [0 −9] : [0 −9] : [0 −9 : [0 −9]” , g f i l e i n f o g e t n ame (i n f o) , 0 , 0))
+ cont inue ;
+
+ pwd = g g e t c u r r e n t d i r () ; /∗ save cur rent d i r e c t o r y ∗/
+ g chd i r (dockdir) ; /∗ needed f o r r ea lpa th () to work ∗/
+
+ ∗ l i s t = g s l i s t a pp end (∗ l i s t , r ea lpa th (target , 0)) ;
+
+ g chd i r (pwd) ; /∗ r e s t o r e prev ious d i r e c t o r y ∗/
+ g f r e e (pwd) ;
+ }
+}
+
+s t a t i c gboolean
+dev i c e i s d ep end i ng on do ck s t a t i o n (GUdevDevice ∗ dev i ce)
+{
+ GSList ∗ i t , ∗ l i s t = NULL;
+ gchar ∗ dockdir ;
+ in t i = 0 ;
+
+ whi le (TRUE) {
+ dockdir = g s t r dup p r i n t f (”/ sys / dev i c e s / plat form/dock.%u” , i) ;
+ in t e x i s t s = g f i l e t e s t (dockdir , G FILE TEST EXISTS) && g f i l e t e s t (dockdir , G FILE TEST IS DIR) ;
+ g f r e e (dockdir) ;
+
+ i f (e x i s t s)
+ get dock dependent dev i c e s (dockdir , &l i s t) ;
+ e l s e
+ break ;
+ i++;
+ }
+
+ fo r (i t = l i s t ; i t != NULL; i t = g s l i s t n e x t (i t))
+ i f (g s t r h a s p r e f i x (g ud ev d ev i c e g e t s y s f s p a t h (dev i ce) , i t−>data))
+ return TRUE;
+

58

A.2. Patches for Userland

+ return FALSE;
+}
+
+s t a t i c void
set media (UDisksDrive ∗ i f a c e ,

GUdevDevice ∗ dev i ce)
{

@@ −229 ,6 +303 ,7 @@ set media (UDisksDrive ∗ i f a c e ,
removable = FALSE;

ud i sk s d r i v e s e t med i a r emovab l e (i f a c e , removable) ;
u d i s k s d r i v e s e t e j e c t a b l e (i f a c e , ke rne l r emovab le) ;

+ ud i s k s d r i v e s e t d ep end i n g on do ck s t a t i o n (i f a c e , d e v i c e i s d ep end i ng on do ck s t a t i o n (dev i c e)) ;

med ia in d r i v e = NULL;
i f (u d i s k s d r i v e g e t med i a a v a i l a b l e (i f a c e))

59

List of Acronyms

60

Bibliography

[1] Advanced Configuration and Power Interface Specification, October 2006.
http://www.acpi.info.

[2] The Linux Kernel Community. File server for recent and archived kernel releases, 2012.
[Online; accessed 21-May-2012] http://www.kernel.org/pub/linux/kernel/.

[3] The Linux Kernel Community. Kernel Documentation/ManagementStyle, 2012. [Online;
accessed 14-May-2012].

[4] The Linux Kernel Community. Kernel Documentation/SubmittingPatches, 2012. [Online;
accessed 14-May-2012].

[5] Jonathan Corbet. How to Participate in the Linux Community, 2008. [Online; accessed
23-May-2012].

[6] Steve Easterbrook, Janice Singer, Margaret-Anne Storey, and Daniela Damian. Select-
ing Empirical Methods for Software Engineering Research Guide to Advanced Empirical
Software Engineering. In Forrest Shull and Janice Singer, editors, Guide to Advanced
Empirical Software Engineering, chapter 11, pages 285–311. Springer London, London,
2008.

[7] David G. Glance. Release criteria for the Linux kernel. First Monday, 9, number 4, 2004.

[8] Andi Kleen. On submitting kernel patches. In Proceedings of the Linux Symposium,
Ottawa, Ontario Canada, 23-26 July 2008.

[9] Gwendolyn K. Lee and Robert E. Cole. From a firm-based to a community-based model
of knowledge creation: The case of the linux kernel development. Organization Science,
14(6):633–649, November 2003.

[10] R. Love. Linux kernel development. Novell Press Series. Novell Press, 2005.

[11] A Mockus, R T Fielding, and J Herbsleb. A case study of open source software develop-
ment: the Apache server, volume 0, pages 263–272. Acm, 2000.

[12] Andrew Morton. The perfect patch, 2012. [Online; accessed 20-May-2012].

[13] Eric S. Raymond. The Cathedral and the Bazaar: Musings on Linux and Open Source by
an Accidental Revolutionary. O’Reilly & Associates, Inc., Sebastopol, CA, USA, 2001.

[14] Peter Weißgerber, Daniel Neu, and Stephan Diehl. Small patches get in! In Proceedings
of the 2008 international working conference on Mining software repositories, MSR ’08,
pages 67–76, New York, NY, USA, 2008. ACM.

61

http://www.kernel.org/pub/linux/kernel/

Bibliography

[15] Wikipedia. User space — Wikipedia, The Free Encyclopedia, 2011. [Online; accessed
25-May-2012] http://en.wikipedia.org/wiki/User space.

[16] Wikipedia. Advanced Configuration and Power Interface — Wikipedia, The Free Encyclo-
pedia, 2012. [Online; accessed 7-May-2012] http://en.wikipedia.org/wiki/Advanced_
Configuration_and_Power_Interface.

[17] Wikipedia. GNOME — Wikipedia, The Free Encyclopedia, 2012. [Online; accessed
15-May-2012] http://en.wikipedia.org/wiki/GNOME.

[18] Wikipedia. Revision control — Wikipedia, The Free Encyclopedia, 2012. [Online; accessed
25-May-2012] http://en.wikipedia.org/wiki/Revision control.

62

http://en.wikipedia.org/wiki/Advanced_Configuration_and_Power_Interface
http://en.wikipedia.org/wiki/Advanced_Configuration_and_Power_Interface

	Introduction
	Literature Review
	Research Design
	Solving a Real-World Problem
	Architecture of Modern GNU/Linux Based Operating Systems
	Required Implementations
	Reevaluation of the Case Study Preconditions

	Formalities of the Patch Submission Process
	The Linux Kernel
	UDisks
	The GNOME Desktop Environment

	Definition of a Submisson Strategy
	Stage 1 - Development and Submission of Linux Kernel Parts
	Stage 2 - Development and Submission of Userland Parts

	Initial Feature Design and Implementation
	Kernel Space
	Patch Set Creation: Iteration One

	Userland: UDisks and GNOME

	Feature Submission Process
	Initial Submission
	Missing the First Kernel Release Cycle
	Strategy Adaption
	Reacting on Feedback from the Community
	Resubmission 1

	Reacting on Feedback Cont.
	Fixing a Boot Problem
	Fixing a Compilation Error

	Drawing a Final Stroke

	Recapitulation
	Schedule Deviance
	Impact of Missing the Deadlines
	Localizing the Problems
	Caused by Personal Matters
	Caused by the Nature of Open Source
	Caused by the Individual Project

	Identified Best Practices

	Conclusion
	Appendix
	Patch Mails for the Linux Kernel
	First Iteration of Patches (2011-12-06)
	Second Iteration of Patches (2012-01-20)
	Additional Patches (2012-02-18)

	Patches for Userland

	Bibliography

