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Abstract

As recently shown in 2013, Android-driven smartphones and tablet PCs are vulnerable to so-called cold boot attacks. With
physical access to an Android device, forensic memory dumps can be acquired with tools like FROST [1] that exploit the
remanence effect of DRAM to read out what is left in memory after a short reboot. While FROST can in some configurations
be deployed to break full disk encryption, encrypted user partitions are usually wiped during a cold boot attack, such that a
post-mortem analysis of main memory remains the only source of digital evidence. Therefore, we provide an in-depth analysis
of Android’s memory structures for system and application level memory. To leverage FROST in the digital investigation
process of Android cases, we provide open-source Volatility [2] plugins to support an automated analysis and extraction of
selected Dalvik VM memory structures.
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I. INTRODUCTION

Today, most of us store sensitive data like emails, photos, calendar entries and contact lists on mobile devices like
smartphones and tablet PCs. This information is of growing importance for the digital investigation process of mobile
devices, e.g., to recover GPS movement profiles, recent phone calls, or even photos from the scene. In practice, however,
this information often remains closed to forensic examiners because modern platforms like iOS and Android provide end
users with a security feature for full disk encryption (FDE) [3]. If secure user PINs or passwords are chosen, such that brute
force attacks become virtually impossible, encrypted user partitions cannot be accessed without knowing the user credentials.
If in such a case the suspect is not able or willing to cooperate, the encrypted data on disk remains closed, potentially hiding
important evidence of the case.

A. Motivation

While the user data partition of mobile devices is often encrypted today, data in RAM is generally not encrypted. Although
iOS and Android provide features for encrypting data on disk, data in RAM must remain unencrypted for technical reasons.
For example, the performance drawback of encrypting main memory is indefensible for mobile end user products. As a
consequence, it seems reasonable for forensic examiners to retrieve digital evidence from RAM rather than from disk.
Considering that mobile devices like smartphones and tablets are switched off only seldom, chances are likely that important
data resides in the unencrypted RAM of a device during the time of its confiscation.

However, for a long time it was unclear whether a smartphone’s RAM can be analyzed with physical access to a target
device only. If user access to a device would be required to analyze RAM, i.e., if the user PIN or password would be
required, the ease of traditional disk forensics is usually preferred to more complex memory forensics. But in the beginning
of 2013, a toolset named FROST [4], [1] was published proving the possibility of so-called cold boot attacks [5] against
Android-driven devices. Cold boot attacks read out RAM with only physical access to a system by rebooting it with a
custom bootloader and then retrieving everything that is left in main memory after boot.

While live analysis techniques for main memory are common, e.g., for the case of incident response in virtual machines,
cold boot attacks allow only for a post-mortem analysis of main memory. Since cold boot attacks compulsorily require the
target device to be rebooted during the attack, only a single memory dump can be acquired for the analysis. After the attack,
the target device stops working and hence, live analyses after cold boot techniques is impossible.

B. Contributions

From a high-level perspective, the digital forensic process can be divided into five separate tasks: data recovery, data
analysis, extraction of evidence and the preservation and presentation of evidence [6]. Our work includes two of these
individual tasks as a contribution: (1) analyzing Android memory images in general and (2) extracting specific evidence
from them. However, the latter is only touched by demonstrating what can be of interest from a legal perspective by providing
four exemplary Volatility plugins [2], but we do not cover all information that is present in RAM. However, our Volatility
plugins give user-friendly access to forensically important data in the RAM, including the phone call history, the last user
input, and metadata of photos like GPS coordinates.



The data recovery step, i.e., the acquisition of Android memory images, is done separately by FROST [1]. In the original
publication of FROST, the authors mentioned that a post-mortem analysis of main memory images is possible, but they
focused on breaking disk encryption of Galaxy Nexus devices. Breaking disk encryption with FROST is only possible if the
bootloader of a target device is already unlocked before the access, since otherwise the encrypted user partition gets wiped
during the attack. In other words, breaking disk encryption with FROST is not possible in most cases, because bootloaders
are locked by default and get unlocked manually only seldom. Therefore, building upon the results of FROST, we ignore
the case of disk encryption and focus on information that can directly be retrieved from Android’s main memory structures.
To this end, we give an in-depth analysis of Android’s Dalvik VM and selected application level structures.

C. Related Work

Although the concept of a post-mortem analysis of main memory has already been mentioned, e.g., regarding Windows
memory structures by Vidas [7], the term memory forensics [8] is often mentioned in the same breath with live forensics [9].
That is why most related work in this field can be classified as live analysis. However, except for the fact that a post-mortem
analysis has to deal with a static memory image taken after power was cut, the methods of both analysis techniques most
closely correspond. For example, identifying Dalvik and application memory structures in RAM is an important challenge
for both disciplines.

Live forensics have been discussed in multiple papers. Hay et al. [10] look at the topic of live forensics from a higher level,
drawing a concrete distinction between static and live analysis. They outline the different possibilities for live analysis, also
considering, but not solely, memory analysis. However, they do not provide an operating system specific solution, particularly
not for Android. The same applies to the paper “Diagnosing Your System without Killing it First” by Adelstein [9]. Adelstein
as well as Hay define live analysis as the process of taking a snapshot from a running system without shutting it down. This
contradicts the method of cold boot attacks, where the system must be rebooted first.

Memory forensics for the identification of data type structures in RAM has been a research topic for several years,
mostly focusing on x86 systems like Linux and Windows, some on embedded devices, but only little on Android. Having
forensic memory images available for further processing, high-level information represented by C structures (in-kernel
information) or Java objects (Android applications) must be analyzed. Yen et al. [11] as well as Urrea [8] focus on that
area. The latter describes the underlying concepts of a concrete Linux distribution by outlining kernel structures relevant for
memory management which can be used to retrieve evidence. Urrea uses dd to read out physical memory at runtime from
/proc/mem., thus performing a typical live analysis.

This simple way of physical memory retrieval is considered flawed by Sylve et al. [12] as it alters the evidence in
an intrusive way. Instead, Sylve et al. developed their own solution capturing memory from Linux- and Android-based
systems. They also illustrate how basic kernel data can be acquired with the help of Volatility. Their paper “Acquisition and
Analysis of Volatile Memory from Android Devices” targets the field of Android live memory forensics and is considered
the most relevant work for us. However, Sylve et al. concentrate on the live acquisition of main memory but do not consult
post-mortem analysis of RAM after cold boot attacks.

In the paper “Live Memory Forensics of Mobile Phones”, Thing et al. [13] describe a method for analyzing Android
memory images in regard to communication. They developed a tool called memgrab to capture all memory regions belonging
to a specific process at runtime. These memory regions can then be searched for known patterns corresponding to chat
messages. However, Thing et al. do not intend to solve the problem of acquiring physical main memory dumps, as we
do with FROST. Finally, Leppert [14] showed another way for Android memory analysis with just looking at the heap of
specific, running applications.

Whether cold boot attacks can serve as a reliable source for forensic memory images has been answered for x86 systems.
In their study “An in-depth Analysis of the Cold Boot Attack”, Carbone et al. [15] ask if the cold boot attack can be used
for sound forensic memory acquisition and come to a largely positive answer. Similar results for x86 have been shown by
Gruhn and Müller in their paper “On the Practicability of Cold Boot Attacks” [16].

D. Paper Outline

The remainder of this paper is structured as follows: In Sect. II, we give background information about FROST, Android
and the Volatility framework. In Sect. III, we describe the process of acquiring forensic main memory images from Android
devices with the help of toolsets like FROST and LiME. In Sect. IV, we introduce Volatility plugins we have implemented
to automate the process of analyzing Dalvik memory in general. In Sect. V, we then present four Volatility plugins we have
implemented to analyze specific Android applications. And in Sect. VI, we discuss possible anti-forensics techniques that
owners and manufacturers can take to complicate the process of investigating memory images and to defeat our method.
Finally, in Sect. VII, we summarize our work and give a brief conclusion.



II. BACKGROUND

We now provide detailed information about cold boot attacks against Android devices by means of FROST (Sect. II-A).
We then give necessary background information about the Android platform (Sect. II-C) as well as about the Volatility
framework (Sect. II-C).

A. Cold Boot Attacks

As shown by Müller and Spreitzenbarth [4], [1], forensic examiners with physical access to an encrypted Android phone
can recover all or part of its data using cold boot attacks [5]. Cold booting a device technically means to briefly cycle power
off and on, without allowing the OS to shut down properly. Hence, cold boot attacks cannot be used for live analyses but
for post-mortem analyses. After cold booting a device, main memory contents are not lost because DRAM chips of PCs and
smartphones exhibit a behavior called the remanence effect [17], [18]. The remanence effect says that RAM contents fade
away over time rather than disappearing all at once, and that they fade more slowly at lower temperatures, i.e., the colder
RAM chips are, the longer the memory contents persist. That is why cold boot attacks are typically more practical when a
target device has been cooled down.
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Figure 1. Bit error ratio (y-axis) in dependence of time in seconds (x-axis) and temperatures [1]

In practice, cold booting an Android device requires an examiner to replug its battery briefly, because smartphones and
tablet PCs usually have no reset button. The battery must be removed for less than a second, or otherwise the bits in RAM
begin to decay and parts of the data in RAM get lost. To increase this remanence interval, and the success rate of cold
boot attacks, Müller and Spreitzenbarth suggested to put the target device into a −15 ◦C freezer for 60 minutes before
replugging its battery. The operating temperature of a Galaxy Nexus phone, which is usually around 30 ◦C, then decreases
to less than 10 ◦C, significantly reducing the risk of decayed bits. For example, below 10 ◦C a bit error rate (BER) of 0 %
can be achieved by replugging the battery in less than a second, whereas higher temperatures rapidly yield to unreliable
results (see Figure 1).

To exploit this behavior in the digital investigation process of Android cases, the recovery tool FROST (Forensic
Recovery of Scrambled Telephones) has been developed. If an examiner gains access to an encrypted Android device that
is running but locked, it is possible to reconstruct personal information from RAM with FROST. As already shown in the
original publication, this information may include personal messages, calendar entries, and photos. However, in the original
publication, a focus was put on identifying the disk encryption key in main memory for breaking Android FDE. Contrary
to that, we focus on an in-depth analysis of Android’s memory structures. The reason is that FROST must be installed
into the recovery partition of an Android device via USB before it can be booted, and this step necessarily wipes out the
user partition unless the bootloader was unlocked before the access – which is usually not the case in practice. Hence, disk
encryption can only be broken with FROST if the bootloader was already unlocked. But once the encrypted user partition
is wiped, FROST can still be used to acquire forensic memory dumps because Android’s main memory is not wiped during
the installation of FROST.



B. The Android Platform

Android originates from the equally named Android, Inc.. The company founded Android and was later purchased by
Google in 2005. In 2007, it was presented to the public by the Open Handset Alliance, consisting of companies like HTC,
Samsung, Qualcomm, Texas Instruments, and last but not least, Google. In October 2008, the first publicly available phone
running the Android platform was released. Android is a software stack consisting of a Linux kernel, a middleware layer, a
Java like virtual machine called Dalvik Virtual Machine (DVM), some core applications like internet browsers and messaging
applications, as well as third party applications making use of the available application framework.

At the bottom of the Android software stack, Android is powered by a Linux kernel. All higher layers rely on the kernel’s
core services such as security, memory management, process management, the network stack, and the driver model [19].
Although Android is based on a mainline Linux kernel, it is extended by a set of patches. The changes made to the
standard Linux kernel include bug fixes, kernel infrastructure improvements, new hardware support, and standalone kernel
enhancements for higher layer elements such as applications. However, none of the kernel changes are of immediate relevance
for both memory acquisition and memory analysis as we do within this paper. There is just one feature added to the kernel
and considered indirectly related to this paper – the Low Memory Killer, as opposed to the Out of Memory Killer in standard
Linux kernels. As soon as a system runs out of memory, the Out of Memory Killer sacrifices and kills one or more processes
to free up memory. In contrast to that, the Low Memory Killer kills processes belonging to an application before the system
exhibits negative effects.

The central software component of Android is the DVM; on Android, every application runs in its own DVM instance.
It is a similar concept as the Java VM, with a few, but significant differences. For example, the byte code created from
the source files are compiled into dex-files instead of class-files. Those are optimized for target devices like smartphones or
tablet computers. The dex-files are created by a tool called dx which compiles and optimizes multiple Java class-files into a
single file. Together with a configuration file AndroidManifest.xml, and non-source-code files like images and layout
descriptions, the dex-file is packaged into an Android Package (apk) file [20]. Basically, an apk-file is a ZIP-compatible file
representing a single application.

Android’s source code is released under an open source license via the Android Open Source Project (AOSP). This
includes the kernel source and other higher level components. Being able to read the source code of Android and the
DVM implementation is essential for this research project, because it enables us to gain deep knowledge about how data
structures lay out in memory. For the purpose of development, debugging, testing, and system profiling, the Android Software
Development Kit is provided. Besides the API libraries to build Java applications, it includes developer tools such as the
Android Debug Bridge (adb), or the Dalvik Debug Monitor Server (DDMS). We make use of these tools at a later point in
this paper.

C. The Volatility Framework

After memory acquisition, i.e., after acquiring a dump file that represents the physical memory of the target system (see
Sect. III), we intend to extract data artifacts from it. Without an in-depth analysis of Android’s memory structures, we would
only be able to extract known file formats like JPEG (with tools like PhotoRec) or simple ASCII strings that are stored in a
contiguous fashion (with tools like strings). This approach is very limited as it can be used for any disk or memory dump
but does not focus on OS and application specific structures. As we intend to extract whole data objects from the Android
system, we make use of the popular forensic investigation framework for volatile memory, in short Volatility [2].

Volatility is a “volatile memory artifact extraction utility framework” that is completely open source, released under
the GNU General Public License and written in Python. At the time of writing, Volatility contains official support for
Microsoft Windows, Linux and Mac OS X. Starting from version 2.3, it also contains support for the ARM architecture,
and thus for Android. In this paper, we use a preliminary, but fully functional version with ARM support. Given a memory
image, Volatility can extract running processes, open network sockets, memory maps for each process, and kernel modules.
Volatility has a public API and comes with an extendable plugin system which makes it easy to write new code, to support
new operating systems, or to add support for extracting additional artifacts.

III. MEMORY DUMP ACQUISITION

We now provide details for the process of memory dump acquisition. In Sect. III-A, we focus on the LiME module which
is used by cold boot attacks with FROST. In Sect. III-B, we focus on a different way of memory acquisition, particularly
heap dump acquisition, that cannot be used in practical forensic cases. However, this method offers us a convenient way to
learn details about Android’s heap structures, and knowledge about these details can eventually be applied to entire physical
memory dumps.



A. Memory Dump Acquisition with FROST and LiME

To acquire a dump of the entire physical memory we use the afore mentioned toolset FROST [1], a modified recovery
image for Android phones. FROST uses an open-source kernel module called LiME [21] to dump memory. LiME can be
loaded into Linux kernels, such as those running on Android devices, to dump the physical memory either to a local file
or over the network. LiME is the first module to allow full memory captures from Android devices [12]. To get more
forensically sound results than with standard Linux tools, the authors payed special attention to minimizing interaction
between kernel and user mode applications during the acquisition process.

In order to acquire the physical memory from the operating system, the LiME module makes use of a kernel structure
called iomem resource (see Listing 1) to get physical memory address ranges. Each iomem resource has a field named start
which marks the start of the physical memory and a field named end, which marks the end. Furthermore, the specific I/O
memory resources, which represent the physical memory regions, are tagged by a field name which must be set to “System
RAM” to omit memory mapped I/O regions. Memory images can either be written to an SD card attached to the target
device or can be dumped via TCP over USB to a host computer.

Listing 1. Kernel Structure iomem resource
1 struct resource iomem_resource = {
2 .name = "PCI mem",
3 .start = 0,
4 .end = -1,
5 .flags = IORESOURCE_MEM,
6 };

The LiME module offers three different image formats that can be used to save a captured memory image on disk. The
format that is used is determined by a parameter passed at the command line during load time of the module. The raw
image format simply concatenates all system RAM ranges and writes them to a file or socket handler. The second format is
called padded and also includes non-system address ranges in the output. However, those ranges do not contain their original
content but are replaced with null. This causes the output to become much larger than it actually is. The third format, called
lime, is discussed in more detail as it is our format of choice. The lime format has been especially developed to be used in
conjunction with Volatility. It is supposed to allow easy analysis with Volatility and a special address space has been added
to deal with this format. Every memory dump based on the lime format has a fixed-size header, containing specific address
space information for each memory range. This eliminates the need for having additional paddings just to fill up unmapped
or memory mapped I/O regions. The LiME header specification is listed in Listing 2.

Listing 2. LiME Image Format Header
1 typedef struct {
2 unsigned int magic; // Always 0x4C694D45 (LiME)
3 unsigned int version; // Header version number
4 unsigned long long s_addr; // Starting address of physical RAM
5 unsigned long long e_addr; // Ending address of physical RAM
6 unsigned char reserved[8]; // Currently all zeros
7 } __attribute__ ((__packed__)) lime_mem_range_header;

In order to dump a physical memory image in the lime format with FROST, the target device needs to stay connected to
the host computer with USB after the installation of FROST. Afterwards, a TCP tunnel can be created with port forwarding
on both the host and the target device, and the target can be induced to start dumping physical memory pages over this
tunnel. With the help of the FROST GUI, these steps can be done by just clicking “RAM Dump via USB” in the FROST
main menu. If the guidelines given in the paper about FROST [4] are followed, i.e., if the target device is cooled down to
below 10 ◦C, and if the battery is replugged within less than a second, a forensic memory image with a BER of 0 % can
be acquired.

B. Heap Dump Acquisition with DDMS and MAT

In contrast to full memory dumps that can be acquired by tools like FROST and allow to capture everything that is stored
in RAM, it is sometimes helpful to acquire a heap dump of a given process. Isolating the heap of a specific process enables
us to identify data type structures inside a limited memory region. Note that this approach cannot be applied in practice,



e.g., after confiscating an Android device at the scene, but that it can be used with certain Android applications to learn
about their data structures.

The approach of investigating an Android application’s heap area is split into the following three basic tasks:
1) Acquisition of the heap dump of a specified application. This can be done with the tool DDMS which is provided by

the Android SDK. The resulting file has a special format called the heap profile.
2) Analysis of this heap profile with a memory analyzer tool such as Eclipse MAT.
3) Manually post-processing of the data provided by the memory analyzer.
The result of step 2 is typically a large list of strings originating from all instantiated java.lang.String classes found in an

application’s heap. This list can be post-processed to find patterns which are likely to be data of forensic interest, such as
account names, email addresses and passwords. While this is a valid approach, it contains some flaws we try to circumvent
with the Volatility approach. For example, acquiring a heap dump is only possible for applications prepared for debugging.
When developing Android applications, there is a flag called android:debuggable in the application’s configuration file.
When set to true, it causes the application to open a debug port whenever the application is started on the target device. This
port can be used by DDMS to acquire a heap dump from an application running on a device which is physically connected
to a computer system. While the corresponding debug option is typically set to true during the time of development, it is
supposed to be disabled when an application is released to the public. If set to false, DDMS has no means of acquiring
the heap dump, but there is a way to modify the value of the debug option after the application has been installed, which
is often sufficient to learn about its data structures. However, this step includes transferring the corresponding apk-file to a
PC, unpacking it, modifying the Android manifest, as well as repacking and resigning the application.

IV. MEMORY DUMP ANALYSIS

Memory images acquired by means of FROST, as described in the last section, represent the state of a system at the time
of acquisition. They contain a whole application’s state and all its data, including the one from the virtual machine it is
running in. This section now conveys the underlying concepts of the extraction of evidence, i.e., how to parse internal data
structures contained in the kernel (see Sect. IV-A) and the DVM (see Sect. IV-B and Sect. IV-C).

A. Analyzing Android Kernel Structures

Before a memory image can be analyzed, a Volatility profile must be created which is passed to the Volatility framework as
a command line parameter. Such a Volatility profile is a set of vtype definitions and optional symbol addresses that Volatility
uses to locate sensitive information, and to parse this information [2]. Basically, a profile is a compressed archive containing
two files — System.map and module.dwarf. The System.map file contains the symbol names and addresses of
static data structures in the Linux kernel. Depending on a kernel’s build configuration, it is typically created at the end of the
compile process. For this purpose, the tool nm is executed, taking the compressed kernel image vmlinuz as a parameter. On
all major Linux distributions, the System.map file is found in the /boot directory alongside with the actual kernel. In the
case of Android, that uses a special version of the Linux kernel, it is found in the kernel source tree after kernel compilation.
The module.dwarf file emerges by compiling a module against the target kernel and extracting the DWARF debugging
information from it. DWARF is a standardized debugging format used by source level debuggers to establish a logical
connection between an output binary and its actual source code [22]. The DWARF debugging information is generated by
the compiler and is included in the output binary. In case of reading RAM dumps, it can be exploited to provide valuable
information about main memory structures and method layouts; it is used by Volatility for that purpose.

In order to create a module.dwarf file, a utility called dwarfdump is required. The Volatility source tree contains the di-
rectory tools/linux/ and running make in that directory compiles the module and produces the desired DWARF file. Cre-
ating the actual profile is done by simply running zip <profile>.zip <mod_path.dwarf> <sys_path.map>.
The resulting ZIP-file needs to be copied to the Volatility source tree (volatility/plugins/overlays/linux/),
and then the profile shows up in the profiles section of the Volatility help output, i.e., we are now able to use Volatility
together with Android memory dumps.

Although the support of Android in Volatility is quite new, Linux support is not, such that a number of corresponding Linux
plugins, that are also working on Android, are already available. For example, the plugin linux pslist, that enumerates all
running processes of a system similar to the Linux ps command. The plugin linux ifconfig simulates the Linux ifconfig
command, i.e., it lists the available network interfaces together with their names, IP and MAC addresses. The plugin
linux route cache reads and prints the route cache that stores recently used routing entries in a hash table. The plugin
linux proc maps acquires memory mappings of each individual process, i.e., it lists the virtual memory addresses and
access flags of the heap, stack, and dynamically linked libraries mapped into each process. While plugins like linux ifconfig



and linux route cache are useful to get direct information from the Android system, linux proc maps is of interest for
analyzing DVM components and userland apps, as we do in the next sections.

B. Analyzing Dalvik Virtual Machine Structures

Andrew Case [23] already showed that a suitable entry point for extracting information out of a DVM is the object
DvmGlobals. It is a structure available to every single DVM instance and contains global data that is shared and
used by application processes. DvmGlobals contains some meta information for a specific DVM instance, including
loadedClasses that is required for further processing. This field is a pointer to a hash table containing all loaded classes
that are known for this instance. These classes again contain meta information, e.g., about their layout, size, and members
which can later be used to access specific class instance data. To summarize, a single DVM instance belonging to one
specific process contains (1) a list of all loaded system classes, and (2) specific information about a single class, such as
static variables and method names.

Listing 3. Plugin dalvik find gdvm offset
1 class dalvik_find_gdvm_offset(linux_common.AbstractLinuxCommand):
2 def calculate(self):
3 offset = 0x0
4 mytask = None
5

6 for task, vma in dalvik.get_data_section_libdvm(self._config):
7 if not self._config.PID:
8 if task.comm}"" != "zygote":
9 continue

10 mytask = task
11 break
12

13 proc_as = mytask.get_process_address_space()
14

15 gDvm = None
16 offset = vma.vm_start
17 while offset < vma.vm_end:
18 offset }= 1
19 gDvm = obj.Object(’DvmGlobals’, vm = proc_as, offset = offset)
20 if dalvik.isDvmGlobals(gDvm):
21 yield (offset - vma.vm_start)

The first of our Volatility plugins we want to discuss is called dalvik find gdvm offset. As its name might suggest,
its purpose is to locate the offset of the DvmGlobals object within the data section where libdvm.so is mapped
into a process’ address space. As stated above, this is the base for further DVM analysis and hence, it serves as a base
for other plugins. The relevant code snippet is shown in Listing 3. After initializing basic variables, the helper function
get_data_section_libdvm() is used to iterate over all memory mappings of the given process. It solely returns the
memory mappings of the data section of libdvm.so. If no specific process ID has been specified as a command line
parameter, the first process running in a DVM is used, called zygote. Starting from that position, the plugin scans and tests
what is likely to be a DvmGlobals object. If found, it passes the offset to the output function, for example as follows:
DvmGlobals offset: 0x7c78. The found offset (here: 0x7c78) is the offset from the start of the data section of a
process and can now be passed to other plugins.

Another plugin we developed is the dalvik vms plugin, which is intended to find all DVM instances and to print information
contained in it. It requires the DvmGlobals offset to be given in the command line, as described above. The corresponding
plugin code in Listing 4 saves the gDvm offset given on the command line. However, if no command line parameter is
passed on, the dalvik find gdvm offset plugin is used internally. The dalvik vms plugin then walks the process mapping of
libdvm.so, checking if a DvmGlobals object can be instantiated and, if successful, passes the task and the object to
the output function which then prints the structure members of gDvm. Those can easily be accessed due to the available
vtypes; an exemplary output is given in Listing 5. It lists information about three DVMs, together with their process IDs,
and names belonging to them. It also contains information about the number of preloaded classes.

Our next plugin, dalvik loaded classes, is used to list the information from dalvik vms together with more detailed
information. The dalvik loaded classes plugin lists all preloaded classes from a specific DVM instance together with the
class offset, which can later be used to list specific class information with the dalvik class information plugin (see later). In
Listing 6, our plugin code is listed that uses the linux proc maps plugin to get the correct process mappings for an arbitrary



Listing 4. Plugin dalvik vms
1 class dalvik_vms(linux_common.AbstractLinuxCommand):
2 def calculate(self):
3 offset = 0x0
4

5 gDvmOffset = int(self._config.GDVM_OFFSET, 16)
6

7 for task, vma in dalvik.get_data_section_libdvm(self._config):
8 gDvm = obj.Object(’DvmGlobals’, offset = vma.vm_start } gDvmOffset, vm = task.

get_process_address_space())
9

10 # sanity check: Is this a valid DvmGlobals object?
11 if not dalvik.isDvmGlobals(gDvm):
12 continue
13 yield task, gDvm

Listing 5. Example dalvik vms Output
1 $ ./vol.py [...] dalvik_vms -o HEX
2

3 PID name heapStartingSize heapMaximumSize
4 ----- --------------- ---------------- ---------------
5 2508 zygote 5242880 134217728
6 2612 system_server 5242880 134217728
7 2717 ndroid.systemui 5242880 134217728
8

9 stackSize tableSize numDeadEntries numEntries
10 ---------- ---------- --------------- ---------------
11 16384 4096 0 2507
12 16384 8192 0 4123
13 16384 8192 0 2787

PID which has been specified on the command line. Then the dalvik vms plugin is utilized to get a list of DVM instances
corresponding to the given process ID. Finally, the code walks those tasks and DVMs to get the concrete list of loaded
classes. For each of those classes, it constructs a ClassObject and passes it to the output function. An example result is
given in Listing 7.

Listing 6. Plugin dalvik loaded classes
1 class dalvik_loaded_classes(linux_common.AbstractLinuxCommand):
2 proc_maps = linux_proc_maps.linux_proc_maps(self._config).calculate()
3 DVMs = dalvik_vms.dalvik_vms(self._config).calculate()
4

5 for task, gDvm in DVMs:
6 for entry in gDvm.loadedClasses.dereference().get_entries():
7 clazz = obj.Object(’ClassObject’, offset = entry, vm = gDvm.loadedClasses.obj_vm)
8 yield task, clazz

Listing 7. Example dalvik loaded classes Output
1 $ ./vol.py [...] dalvik_vloaded_classes -o HEX -p PID
2 PID Offset Descriptor sourceFile
3 ---- ---------- -------------------------------- ----------------
4 4614 0x40c378b8 Ljava/lang/Long; Long.java
5 4614 0x40deb6d0 Ljava/io/Writer; Writer.java
6 4614 0x414e2f60 Lde/homac/Mirrored/ArticlesList; ArticlesList.jav

In addition to the Java descriptor and source file of the class, the important information needed for further analysis is
the offset. This is the virtual address of the system class within its process address space and is required to list specific



information about a single class. The information can be gathered by the following plugin: dalvik class information. This
plugin lists concrete information about a specific system class, such as the number of instance fields, the object size in
memory, and method names. It is required to parse instance objects because it contains the byte offsets of each instance
field and thus, the location in the physical memory image. If the plugin is supplied with a derived class object, it can
also list instance fields of arbitrary super classes. A shortened example output is listed in Listing 8; it is the output for a
Ljava/lang/Long class at virtual address 0x40c378b8. It has one instance field named value, whose value can be found
at offset 8 from the beginning of an instance object from the same kind of system class. Besides an init() method, it has
methods (direct and virtual) from a class representing a long integer, such as toString(), compare() and equals().

Listing 8. Example dalvik class information Output
1 $ ./vol.py [...] dalvik_class_information -o HEX -p PID \
2 -c 0x40c378b8
3

4 objectSize directMethodCount virtualMethodCount
5 ---------- ----------------- ------------------
6 16 0 11
7

8 ifieldCount ifieldRefCount sfieldCount
9 ----------- -------------- -----------

10 1 0 6
11

12 ------- Instance fields ------
13 name signature accessFlags byteOffset
14 -------- ----------- ----------- ----------
15 value J 18 8
16

17 ------- Direct Methods ------
18 name shorty
19 ---------------------------------------- --------------------
20 <init> VJ
21 bitCount IJ
22 compare IJJ
23 toString LJ
24 [...]
25

26 ------- Virtual Methods ------
27 name shorty
28 ---------------------------------------- --------------------
29 equals ZL
30 hashCode I
31 intValue I
32 [...]

Listing 9. Plugin dalvik class information
1 class dalvik_class_information(linux_common.AbstractLinuxComman):
2 def calculate(self):
3

4 classOffset = int(self._config.CLASS_OFFSET, 16)
5

6 proc_as = None
7 tasks = linux_pslist.linux_pslist(self._config).calculate()
8 for task in tasks:
9 if task.pid == int(self._config.PID):

10 proc_as = task.get_process_address_space()
11

12 clazz = obj.Object(’ClassObject’, offset = classOffset, vm = proc_as)
13 yield clazz

To get this information, the plugin code in Listing 9 first reads the class offset given on the command line. In the following
lines, the address space for a PID given on the command line is stored into the variable proc_as which is used to instantiate
a ClassObject which is then passed to the output function.



C. Analyzing Runtime Objects

Until now, our plugins have just unveiled generic DVM data and information about system classes but no data that might
be relevant for real forensic cases. Relevant data are runtime objects of applications rather than static class information.
Hence, what is required in real cases is the location, i.e., the address, of instantiated objects inside a memory dump. Together
with the static information from system class files, relevant data can be extracted.

For that purpose, we developed a plugin called dalvik find class instance to scan a memory region for a certain class
instance. Due to the fact that new class objects are typically instantiated on the heap, looking for an instance object inside
the DVM heap is a good starting point. The DVM heap is mapped into each process address space, and our plugin code,
listed in Listing 10, locates the start and end addresses of the corresponding data section by using the helper function
dalvik get data section dalvik heap(). Afterwards, the plugin starts scanning at the beginning of the data section, trying to
instantiate an Object. This Object contains a reference to the desired ClassObject. In turn, the ClassObject’s
clazz pointer points to the actual system class, the one given on the command line. If the correct address is found, it is
handed over to the output function until the end of the Dalvik heap data section is reached. During our evaluation of various
memory images, this method for retrieving instance objects turned out to work reliably.

Listing 10. Plugin dalvik find class instance
1 class dalvik_find_class_instance(linux_common.AbstractLinuxCommand):
2 def calculate(self):
3 classOffset = int(self._config.CLASS_OFFSET, 16)
4

5 start = 0
6 end = 0
7 proc_as = None
8 for task, vma in dalvik.get_data_section_dalvik_heap(self._config):
9 start = vma.vm_start

10 end = vma.vm_end
11 proc_as = task.get_process_address_space()
12 break
13

14 offset = start
15 while offset < end:
16 refObj = obj.Object(’Object’, offset = offset, vm = proc_as)
17

18 if refObj.clazz.clazz == classOffset:
19 sysClass = refObj.clazz.clazz
20 yield sysClass, refObj.clazz

The first column in Listing 11 contains the system class for which a corresponding instance object must be found. The
second column lists the class instances we are trying to locate and shows multiple rows containing different pointers for the
class instance. For three reasons, we cannot stop searching when a single pointer has been found: First, not all objects in
memory are valid; the reference to the object might still be intact, so that the clazz pointer check succeeds but other areas
of the object’s memory might have been overwritten. If no Java code holds a reference to an object, the garbage collector
is free to handle it, including reassignment of the corresponding memory regions or just leaving it in the current state.
Second, there might be multiple addresses (references) pointing to the same data object. And third, there might be a huge
coincidence that the clazz pointer check succeeds although the corresponding memory area never contained an object of
the class we were looking for. To be sure that a specific address really contains the desired instance object, the contained
data needs additionally to be looked up and verified manually.

Listing 11. Example dalvik find class instance Output
1 $ ./vol.py dalvik_class_information -p PID -c HEX
2 SystemClass InstanceClass
3 ----------------------- -------------
4 0x414e2f60 0x414e3658
5 0x414e2f60 0x4156bec8
6 [...]



V. VOLATILITY PLUGINS FOR SELECTED APPLICATIONS

The first step to analyze main memory structures of a certain application is to identify its process, e.g., by using the
Volatility plugin linux pslist for an overview of all running processes. Either the process in question can be determined
by its name, or further investigations are required. For a manual analysis, the plugin linux memmap can be used to get
a mapping between the virtual address space of the process and the physical addresses inside the memory dump at hand.
Once the PID of a process is known, more information can be gathered with the plugin dalvik loaded classes, as described
previously.

To analyze a selected process, there are basically two approaches to recover sensitive data: Either top-down, i.e., a
loaded class file is used as starting point to descend to its internal data structures by running dalvik class information and
dalvik find class instance as explained above. This approach is preferable if the class name is known or has a revealing
name, while the variables inside the class are unknown. The other approach, bottom-up, starts from a known value of a data
structure to search for the class file in RAM. This approach is sometimes more practical, especially if a Java class name is
unknown, but static variables inside the class are known and can easily be traced. For example, this is often the case for
static UTF16 unicode strings of an application.

A DVM string object is defined in the file dalvik/vm/oo/Object.h. The instanceData field of a string object points to an
array object, which in turn is also defined in dalvik/vm/oo/Object.h. The array object has a field to store the length and a
field to store the content of a string. To identify a class by a known string value, a pointer to that string must be traced in
memory which points to the first byte of the array object. Usually the string object is stored immediately before the array
object, and immediately before the string object another pointer is stored that points to the string object itself. This pointer
is then an instance variable of this class we are searching for, taking us to the corresponding class object. The output of the
plugin dalvik loaded classes reveals what kind of class this object is.

In the remainder of this section, we describe four selected applications that we analyzed to recover data relevant for digital
evidence: the phone call history (Sect. V-A), the last user input (Sect. V-B), the user PIN or password (Sect. V-C), and the
gallery app with metadata about photos (Sect. V-D). Note that we do not show any more code listings at this point but give
higher level descriptions only, as our application specific plugins are too long to be listed meaningfully.

A. Phone Call History

One of our goals was to recover the list of recent incoming and outgoing phone calls from an Android memory dump.
This list is loaded when the phone app is opened and therefore, to recover that list, the phone app must have been started
at least once after the telephone was booted. The responsible process for the phone app, and thereby for the call history, is
com.android.contacts. This process loads the class file PhoneClassDetails.java which models the data of all telephone calls
in a history structure. One instance of this class is in memory per history entry. The data fields for each instance are typical
meta information of a call: type (incoming, outgoing, or missed), duration, date and time, telephone number, contact name,
and, if available, an assigned photo of the contact.

To automatically extract and display this metadata, we provide the Volatility plugin called dalvik app calllog. This plugin
accepts the command line parameters -o for an offset to the gDvm object, -p for a process ID, and -c for an offset to the
class PhoneClassDetails. If some of these parameters are known and are passed on to the plugin, the runtime of the plugin
reduces significantly. Otherwise the plugin has to search for these values in RAM by itself. For example, if necessary the
plugin runs other Volatility modules like linux pslist, dalvik loaded classes and dalvik find class instance to find possible
instances of the class PhoneClassDetails, as explained above.

B. Last User Input

One requirement to be able to read out user PINs and passwords is that they have been typed in at least once after
the telephone was booted, meaning that the screen must have been unlocked once. Assuming that no further inputs were
given after unlocking the screen, the PIN is equal to the last user input, which can be found in an Android memory dump
as a UTF16 unicode string. The unicode string of the last user input is created by the class RichInputConnection within
the process com.android.inputmethod.latin, and is stored in a variable called mCommittedTextBeforeComposingText. This
variable is like a keyboard buffer, i.e., it stores the last typed and confirmed key strokes of the on-screen keyboard.

To recover the last user input, we provide a Volatility plugin called dalvik app lastInput. Actually, this plugin does not
only recover PINs but arbitrary user inputs that were given last; this might be an interesting artifact of digital evidence in
many cases. Similar to Sect. V-A, the dalvik app lastInput plugin accepts three command line parameters: the gDvm offset,
the PID, and the class file offset. If none, or only some, of these parameters are given, the plugin can determine missing
values automatically as well.



C. User PIN or Password

Retrieving the phone call history or the last user input from RAM, as well as other string based data including contacts and
SMS, is relatively straight forward. More Volatility plugins in the fashion of dalvik app calllog and dalvik app lastInput
can be implemented by the methods we provide. Somewhat more challenging is the recovery of the user PIN or password
assuming that other user inputs were given after unlocking the screen.

As we observed, the PIN is not only stored inside the keyboard buffer but is in RAM at least twice: once as the UTF16
unicode string described above, and once as an ASCII string. The ASCII version of the PIN is stored by the process
keystore. This process is a system process and does not run within a DVM instance. By means of the Volatility plugin
linux proc maps, we figured out that the password is stored inside the stack area of the keystore process, and we were able
to limit the position of the PIN to the range of 200 KBytes. In all our experiments, the PIN was located inside this 200
KBytes area of the main memory. Furthermore, some offsets between known values and the PIN inside this area seem to
be constant, whereby we were able to implement a reliable method to reconstruct the PIN. Again, we provide this method
as a Volatility plugin, called dalvik app password.

D. Metadata of Photos

Last, we wanted to extract metadata from the photos in the Android gallery app. One requirement again is, that the gallery
has been started at least once after the telephone was booted. Starting the gallery, the responsible process is droid.gallery3d
which loads the class LocalAlbum. This class represents a photo or video album, and stores the name of the album as well
as a variable named mItemPath which in turn points to all items in that album. A single picture is represented by the class
LocalImage which extends the class LocalMediaItem. In this class, forensically relevant metadata of a picture are stored,
like its name, its size, the date and the time, and even the GPS coordinates of the place it was taken. As in the previous
sections, we provide an automatic Volatility plugin to retrieve this data from memory dumps, called dalvik app pictures.
Note that a picture itself, if it is in RAM, can be recovered by third party tools like PhotoRec. But be aware that not all
pictures are always present in RAM, as already mentioned by the authors of FROST [1], meaning that only the metadata
of all pictures can be reconstructed for sure, but not the contents.

VI. ANTI-FORENSICS

Anti-forensics techniques to defeat cold boot attacks have long been studied in academics, but end user products secure
against cold boot attacks are still rare if available at all. One reason is that academic solutions only counteract certain parts
of the cold boot problem. For example, the field of CPU-bound encryption systems, including tools like TRESOR [24] on
x86 and ARMORED [25] on ARM, only hides the disk encryption key inside CPU registers against physical RAM access.
Thus, these solutions defeat attacks on FDE, but they do not protect all data in RAM.

For a more powerful anti-forensics technique against cold boot, all data main memory must be encrypted, either in
hardware or in software. While hardware encryption of RAM is basically possible, as shown by experiments with FPGA-
based PCI cards [26], implementing such a solution must be left to manufacturers [27], [28]. Software-based solutions, on
the other hand, as described by Henson and Taylor [29], could be adapted by end users but require expert knowledge for
the installation. Apart from smartphones and ARM, privatecore.com offers software-based memory encryption for x86 VMs
in a solution named vCage.

Besides memory encryption, other techniques to defeat cold boot attacks exist, e.g., Deadbolt [30]. Basically, Deadbolt
comes with two Android installations, one offering only functionality that is most frequently used (like making a phone
call), and the other offering Android’s full functionality (including emails, internet browsing, and photography). Deadbolt
users are advised to switch between both Android modes to preserve mobility and security at the same time. So Deadbolt
cannot defeat memory acquisition by cold boot attacks, but it reduces the amount of privacy related data in RAM. According
to the authors of Deadbolt, switching between both Android installations requires less time than booting up the phone, but
apparently lacks in user-friendliness though.

Cold boot resistant Android apps, that can be purchased from Google’s Play Store like any other app, would be more user-
friendly. For example, purchasing a cold boot resistant email, calendar or photo app could protect the respective information
against cold boot attacks. Technically, cold boot resistant apps must react on the screen lock event in a way that all data
is erased from RAM and written back to disk – which is a secure method when FDE is activated and the bootloader is
locked. We experimented with Android apps of that kind but observed that the garbage collector of Android’s DVM does
not reliably remove memory contents, although those were explicitly freed or overwritten inside the Java app several times.
The only method allowing us to reliably remove data from RAM was to use native code. Native code, however, lacks many
libraries for typical Android Java apps, including many GUI and network functionalities. To allow cold boot resistant apps



in future, the DVM must be extended by a mechanism for secure deallocation reducing the lifetime of data in memory, as
already suggested by Chow et al. in 2005 [31].

Another anti-forensics technique that counteracts practical implementations like FROST, is to wipe out the disk and the
RAM at the time a bootloader gets unlocked. Such a countermeasure does not defeat all kinds of cold boot attacks, e.g., it
does not defeat variants of the cold boot attack where RAM chips are removed physically and plugged into a second analysis
PC. But note that on all common Android smartphones, RAM chips are soldered onto the board and cannot be removed
to be read out in another smartphone. Hence, wiping out RAM on boot time, or at least when unlocking the bootloader,
indeed raises the bar for attackers.

VII. CONCLUSIONS

In traditional disk forensics, data on disk is not lost when power is cut because it is stored in a non-volatile fashion,
for instance on flash memory. Contrary to that, we dealt with the analysis of volatile memory, in particular with physical
memory dumps that we acquired from Android systems. For the step of memory acquisition, we focused on cold boot
techniques and the FROST toolset. As opposed to previous publications about Android memory forensics, most notably by
Sylve et al. [12], cold boot techniques do not permit live analysis because the target system must compulsorily be halted
and rebooted. Instead, we focused on a post-mortem analysis of static memory images that we could acquire with pure
physical access. However, the methods for identifying data type structures inside memory dumps are largely the same for
both analyses techniques.

In this paper, we first introduced basics to take full physical memory dumps from Android, and then developed general
methods to identity Dalvik and application level data structures in these memory dumps. Exemplarily, we developed four
Volatility plugins based on our methods to recover personal information that is relevant in legal cases, including the history
of recent phone calls, the last given user input, and metadata of photos like GPS coordinates.

Finally, we looked at anti-forensics techniques against the cold boot method. In sum, many ideas to counteract cold boot
attacks exist in academia, but none of them is applied in a secure and user-friendly manner on today’s mobile devices. That
is, tools like FROST cannot be defeated easily by end users today, and so FROST remains an interesting option for the
forensic investigation process. Tools like FROST, together with an extensive understanding of Android’s memory structure,
are an interesting source for digital evidence in the future.
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